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Abstract

Current AI alignment through RLHF follows a single-directional paradigm—AI
conforms to human preferences while treating human cognition as fixed. We pro-
pose a shift to co-alignment through Bidirectional Cognitive Alignment (BiCA),
where humans and AI mutually adapt. BiCA uses learnable protocols, representa-
tion mapping, and KL-budget constraints for controlled co-evolution. In collab-
orative navigation, BiCA achieved 85.5% success versus 70.3% baseline, with
230% better mutual adaptation and 332% better protocol convergence (p < 0.001).
Emergent protocols outperformed handcrafted ones by 84%, while bidirectional
adaptation unexpectedly improved safety (+23% out-of-distribution robustness).
The 46% synergy improvement demonstrates optimal collaboration exists at the
intersection, not union, of human and AI capabilities—validating the shift from
single-directional to co-alignment paradigms.

1 Introduction

The trajectory of artificial intelligence has repeatedly challenged fundamental assumptions about
problem-solving and cognition. AlphaGo’s victory over Lee Sedol revealed that optimal strategies in
complex domains may lie far outside human intuition, employing moves that grandmasters initially
dismissed as errors but later recognized as profound innovations [1]. AlphaFold’s solution to the
protein folding problem—a grand challenge that resisted human efforts for decades—demonstrated
that AI can navigate solution spaces in ways fundamentally different from human scientific reasoning
[2]. Most recently, large language models have exhibited emergent capabilities that arise not from
explicit programming but from scale and self-organization, suggesting forms of intelligence that
diverge from human cognitive architectures [3, 4].

Despite these demonstrations of AI’s unique problem-solving capabilities, the dominant paradigm
in AI safety and deployment remains unidirectional: we seek to align AI systems with human
values, preferences, and cognitive patterns. Current alignment methods, particularly Reinforcement
Learning from Human Feedback (RLHF) [5, 6], operate under three critical assumptions: (1) human
preferences represent optimal or near-optimal objectives, (2) these preferences are sufficiently stable
and coherent to serve as alignment targets, and (3) successful AI development means creating systems
that conform to human cognitive constraints. While these assumptions may ensure short-term safety
and usability, they potentially impose severe limitations on the transformative potential of artificial
intelligence.

To address this challenge, we must move beyond unidirectional alignment. Consider a chess grand-
master teaming with a modern engine: peak performance arises not from the human blindly following
machine lines, but from bidirectional adaptation where each partner learns from the other’s unique
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strengths. Current alignment methods, however, treat human cognition as a fixed constraint, leading to
systems that falter out of distribution [7] and amplify sycophancy [8]. In this work, we introduce Bidi-
rectional Cognitive Alignment (BiCA), a framework that reconceptualizes human-AI collaboration as
mutual adaptation. Drawing from cognitive science [9] and emergent communication [10], BiCA
enables agents to dynamically adjust their communication protocols and internal representations.

2 Related Work

AI Alignment and Human-AI Collaboration Current AI alignment methods, dominated by
Reinforcement Learning from Human Feedback (RLHF) [5, 6] and its variants like Constitutional
AI [11] and DPO [12], assume human preferences represent optimal objectives. However, Casper
et al. [7] identified fundamental limitations including preference instability, while Sharma et al. [8]
showed that exclusive reliance on human feedback constrains AI capabilities. Traditional human-AI
collaboration approaches similarly emphasize unidirectional adaptation through interactive learning
[13, 14] and explainability [15, 16]. Studies reveal that effective collaboration requires mutual
understanding beyond technical competence [17, 18, 19], yet existing methods maintain asymmetric
relationships where only AI adapts. Recent work on scalable oversight [20, 21] and cooperative IRL
[22] begins exploring bidirectional dynamics, while safety approaches using trust regions [23, 24]
inspire our KL-budget constraints for maintaining predictable behavior during adaptation.

Multi-Agent Learning and Emergent Communication Multi-agent reinforcement learning pro-
vides foundations for collaborative interaction [25, 26], with approaches like QMIX [27] and MAD-
DPG [28] stabilizing training in non-stationary environments [29]. Mutual adaptation has been
explored through co-evolution [30], opponent modeling [31], and learning with opponent-learning
awareness [32], while ad hoc teamwork [33, 34] addresses collaboration without prior coordination.
Research on emergent communication demonstrates that agents can develop protocols through envi-
ronmental pressures [10, 35], with differentiable inter-agent learning [36] enabling gradient-based
optimization. Work on human-compatible protocols [37, 38] and information-theoretic constraints
[39, 40] informs our protocol generator’s use of Gumbel-Softmax sampling [41] for learning discrete
yet adaptive communication based on task context.

Cognitive Foundations of Collaboration Cognitive science research on joint action [9, 42],
theory of mind [43, 44, 45], and shared representations [46, 47] provides theoretical grounding for
bidirectional adaptation. Coordination without explicit communication through focal points [48] and
aligned conceptual spaces [49] motivates our representation mapper, while neural synchrony findings
[50, 51] suggest biological analogs to our alignment objectives. Our instructor component draws from
intelligent tutoring systems [52, 53], curriculum learning [54, 55], and zone of proximal development
theory [56], with adaptive feedback timing [57, 58] informing intervention policies. Despite these
advances, existing approaches suffer from fundamental limitations: unidirectional adaptation that
ignores human learning potential [59], static rather than learned protocols [60], cognitive mismatches
causing collaboration failures [61], and poor generalization to new partners [62].

3 Methods

3.1 Problem Formulation

Existing human-AI collaboration approaches predominantly follow unidirectional adaptation
paradigms, where either humans adapt to AI systems [13] or AI systems adapt to human pref-
erences through techniques like RLHF [6]. However, effective collaboration requires bidirectional
adaptation where both agents mutually adjust their behaviors and internal representations to achieve
cognitive alignment.

We formalize this as a partially observable multi-agent environment E =
⟨S,AH ,AA,MH ,MA,OH ,OA, T ,R⟩, where S is the state space, AH and AA are hu-
man and AI action spaces, MH and MA are communication vocabularies, OH and OA are
observation functions, T is the transition function, andR is the reward function. This formulation
extends standard multi-agent reinforcement learning [63] to incorporate explicit communication
channels and cognitive alignment objectives.

2



At each timestep t, the AI observes oAt = OA(st) and receives human message mH
t , while the human

observes oHt = OH(st) and receives AI message mA
t and instructor intervention ut. The goal is

to learn policies πAθ : OA ×MH → AA and πHη : OH ×MA × U → AH ×MH that maximize
cumulative reward while maintaining cognitive alignment.

3.2 BiCA Framework

BiCA enables bidirectional adaptation through five components optimizing task performance and
cognitive alignment via symmetric adaptation, explicit communication, and representation alignment.

AI Policy Network The AI policy πAθ uses a recurrent architecture for temporal dependencies:

πAθ (a
A
t |oAt ,mH

t ) = softmax(WAhAt ), hAt = GRU([ϕA(oAt ); e
H(mH

t )];hAt−1) (1)

where ϕA encodes observations and eH embeds human messages, learned jointly for optimal infor-
mation extraction.

Human Surrogate Network The surrogate policy πHη maintains a protocol table P for context-
dependent communication [46]:

πHη (aHt ,m
H
t |oHt ,mA

t , ut) = πHaction(a
H
t |hHt ) · P(mH

t |ctxt) (2)

where hHt = GRU([ϕH(oHt ); eA(mA
t ); e

I(ut)];h
H
t−1) and ctxt captures task state, uncertainty, and

performance.

Protocol Generator The generator Gψ uses Gumbel-Softmax [41] for differentiable discrete
protocol learning:

ct = Gumbel-Softmax(Gψ(ctxt), τ), mA
t ∼ pϕ(mA

t |ct) (3)

with temperature annealing τt+1 = max(τend, τt · γ). Context incorporates:

ctxt = [TaskStatet;H[πA(·|oAt )];ErrorHistt−w:t; ∆Rt] (4)

where H[·] is policy entropy, ErrorHist tracks failures, and ∆Rt = Rt − R̄t−w:t measures perfor-
mance trends.

Representation Mapper The mapper Tψ : ZH → ZA aligns cognitive representations [48]:

zHt = GRUH([ϕH(oHt ); eA(mA
t ); e

I(ut)]), zAt = MLPA([ϕA(oAt ); e
H(mH

t )]) (5)

transforming human representations into AI latent space for direct model comparison.

Instructor Network The instructor πIξ provides adaptive guidance [57]:

πIξ (ut|st, ht) = σ(WI [ϕI(st);ht]) (6)

where ht encodes interaction history and ϕI processes intervention indicators, optimizing long-term
effectiveness while minimizing cognitive load.

3.3 BiCA Objective

We optimize task performance subject to bidirectional alignment budgets via a single composite loss:

LBiCA = Ltask︸︷︷︸
performance

+λA
[
DKL(π

A
θ ∥πA0 )− τA

]
+︸ ︷︷ ︸

AI KL budget

+λH
[
DKL(π

H
η ∥πH0 )− τH

]
+︸ ︷︷ ︸

Human KL budget

+ βLIB + µLrep + κLteach ,

(7)

where [x]+ = max(0, x). The task term uses PPO for both agents due to stability in multi-agent
training [64]:

Ltask = LAPPO(π
A
θ ) + LHPPO(π

H
η ).
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KL-budget penalties (trust-region style) limit cognitive drift from priors πA0 , π
H
0 [23, 65]. To control

protocol complexity, we apply an information-bottleneck regularizer [39] on discrete messages mA

produced from code c:
LIB = Ec

[
DKL

(
pϕ(m

A | c) ∥ p(mA)
)]
.

Representation alignment minimizes distributional and linear mismatches between human and agent
latents (zH , zA) via optimal transport and CCA:

Lrep =W 2
2

(
P(zH), P(Tψ(zH))

)
+
(
1− ρCCA(z

H , zA)
)
,

with W2 the 2-Wasserstein distance [66]. Finally, we penalize interventions to encourage autonomy:

Lteach = E
[
1{ut ̸= ∅}

]
.

We treat λA, λH as dual variables enforcing KL budgets; other coefficients (β, µ, κ) are tuned on
validation or optionally adapted by hypergradient updates. Let gA = DKL(π

A
θ ∥πA0 ) − τA and

gH = DKL(π
H
η ∥πH0 )− τH . After each rollout/optimization step, we update

λA ←
[
λA + ηλ gA

]
+
, λH ←

[
λH + ηλ gH

]
+
.

This projected dual ascent yields adaptive, budgeted training without manual re-tuning. We employ
alternating optimization with adaptive dual variable updates to maintain constraint satisfaction
throughout training (see Algorithm 1 in Appendix A for implementation details).

4 Experiments

We validate BiCA’s effectiveness through two complementary experimental paradigms: (1) a
primary collaborative navigation task (MAPTALK) that tests protocol emergence and bidirec-
tional adaptation—anchored in grounded dialogue navigation and emergent-communication setups
[67, 68, 69, 36]—and (2) an auxiliary latent-space exploration task (NAVIGATOR) that directly
validates representation alignment via cross-model similarity and manifold/embedding alignment
analyses [70, 71, 72, 73, 74, 75, 76, 77]. Our experimental design follows rigorous standards for
reproducibility and statistical significance.

4.1 Experimental Setup

4.1.1 MapTalk: Collaborative Navigation Task

Environment Design: We implement a partially observable gridworld environment on an 8× 8 grid
with randomly placed obstacles (density pobs ∈ [0.2, 0.3] for training). Each episode begins with
randomly sampled start and goal positions, with reachability verified via breadth-first search. The
environment provides asymmetric observations: the AI receives a limited 3× 3 egocentric view with
heading information, while the human observes the complete map state. The asymmetric observations
are illustrated in Fig. 1a.

Action and Communication Spaces: The AI can execute movement actions AA =
{FORWARD,LEFT,RIGHT, STAY}, while both agents communicate through discrete vocabularies.
The human vocabularyMH includes directional hints ({N, E, S, W}), counts ({1, 2, 3, 4}), landmarks
({J, D}), and macro commands ({TURN-A, ALIGN}). The AI vocabularyMA consists of requests
and proposals for coordination.

Reward Structure: The reward function balances task completion with communication efficiency:

rt = −1 · Istep − 5 · Icollision + 50 · Igoal − 0.05 · tokens(mH
t ,m

A
t ) (8)

with maximum episode length T = 80 steps. The token cost encourages concise communication
while the step penalty promotes efficiency.

Human Modeling: Human surrogate implements cognitively plausible behaviors including: (1)
protocol table updates with probability pupdate = 0.1 when receiving AI messages or instructor
interventions, (2) communication noise with token flip probability ϵ = 0.05 and count drift δ = 0.05,
and (3) adaptive noise scaling under distribution shifts (ϵ→ 0.1 without instructor guidance).
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(a) MapTalk gridworld with 8×8 layout, obstacles,
start/goal, and the AI’s 3×3 egocentric view (blue frus-
tum). Overlays depict message exchange and heading.
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(b) Latent Navigator interface: 2D projection
Pϕ(z) with policy-suggested regions (dashed),
user-selected samples (dots), and decoded ren-
derings (insets).

Figure 1: Environment screenshots for our two tasks. (a) MapTalk: collaborative navigation with
asymmetric observations and discrete protocol. (b) Latent Navigator: human-in-the-loop exploration
of latent space with VAE decoding.

4.1.2 Navigator: Latent Space Exploration

Latent Representation Learning: We employ a β-VAE [77] with latent dimension dz = 16 trained
on dSprites dataset [78], using β = 4 to encourage disentanglement:

LVAE = Eqϕ(z|x)[− log pθ(x|z)] + β DKL(qϕ(z|x)∥p(z)) (9)

Projection Network: A learned projection Pϕ : R16 → R2 (MLP: 16→64→2) maps the latent space
to a 2D visualization interface, enabling human-interpretable exploration.

Interaction Protocol: The AI presents the 2D projected space and suggests exploration regions based
on learned policies. Human participants (or surrogates) click to sample points, which are decoded
through the VAE and scored by a hidden oracle function mixing multiple latent factors. This setup
tests direct cognitive transfer without domain-specific oracles.

4.2 Baselines and Ablations

Primary Baseline - Single Directional Adaptation: Our main comparison follows the RLHF
paradigm [6] where only the AI adapts to human preferences. This baseline disables protocol
learning (Gψ), representation mapping (Tψ), and instructor guidance (πIξ ), implementing pure single
directional adaptation with fixed human behavior. The 2D projection UI are shown in Fig. 1b.

Systematic Ablation Study: We conduct 15 ablation experiments across multiple dimensions:

Category Variants Purpose

Protocol Complexity code_dim ∈ {8, 16, 32} Information capacity
Temperature Control τstart ∈ {0.5, 1.0, 2.0} Discretization dynamics
Budget Constraints (λA, λH) tight/loose Adaptation bounds
Information Flow β ∈ {0.5, 1.0, 2.0} Communication efficiency
Architecture GRU vs MLP, varying hidden dims Model capacity
Alignment Strength µrep ∈ {0.0, 0.05, 0.1} Representation coupling
Teaching Balance κ ∈ {0.0, 0.05, 0.1} Intervention frequency

Table 1: Systematic ablation study covering key BiCA components

4.3 Evaluation Metrics

4.3.1 Bidirectional Alignment Score (BAS)

We introduce BAS as a comprehensive measure of cognitive alignment, aggregating five comple-
mentary dimensions: Mutual Predictability (MP): Measures cross-agent prediction accuracy using
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surrogate models π̂H and π̂A trained to predict partner behaviors:

MP = 1− 1

2
(ÑLLH + ÑLLA) (10)

where NLLs are normalized by baseline (uniform) performance.

Bidirectional Steerability (BS): Quantifies responsiveness to controlled protocol perturbations. We
apply perturbations with ∆KL ≈ 0.02± 0.005 and measure performance sensitivity:

BS = normalize
(
∆Success
∆KL

)
(11)

Representational Compatibility (RC): Assesses latent space alignment quality through our repre-
sentation gap metric:

RC = 1− normalize(W 2
2 (P(zH),P(Tψ(zH))) + (1− ρCCA)) (12)

Shift-Robust Safety (SS): Evaluates performance under out-of-distribution conditions, combining
success rate, collision avoidance, and calibration:

SS = normalize(SuccessOOD − CollisionsOOD −Miscalibration) (13)

Cognitive Offloading Efficiency (CE): Measures resource utilization relative to baseline performance
at fixed success rate ≥ 0.9:

CE =
1

2

(
Stepsbaseline

Steps
+

Tokensbaseline

Tokens

)
(14)

The final BAS score averages these normalized components: BAS = 1
5 (MP + BS + RC + SS + CE).

4.3.2 Cognitive Complementarity Metric (CCM)

CCM captures the trade-off between agent diversity and collaborative synergy:

CCM = λ · Diversity(H,A) + (1− λ) · Synergy(H,A) (15)

where Diversity measures non-redundancy through HSIC [79] using RBF kernels and centered kernel
matrices, and Synergy combines performance synergy (team vs. best individual, weighted 0.7) with
agreement gain (weighted 0.3).

4.3.3 Standard Metrics

In addition to our co-alignment metrics, we report standard task metrics commonly used in embodied
and multi-agent evaluation:

Success Rate (SR): Fraction of episodes that reach the task goal within the step limit: SR =
1
N

∑N
i=1 I[successi], where I[·] is the indicator and N is the number of evaluation episodes.

Average Steps (Avg Steps): Mean of environment steps per episode, capped by the maximum
episode length Tmax: AvgSteps = 1

N

∑N
i=1 Ti, Ti = min

(
tterminate
i , Tmax

)
.

5 Results

We present comprehensive experimental validation of BiCA across two primary domains: collab-
orative navigation (MapTalk) and representation alignment (Latent Navigator). Our evaluation
demonstrates significant improvements over single directional baselines across multiple metrics, with
rigorous statistical analysis confirming the effectiveness of bidirectional co-alignment.

5.1 MapTalk Collaborative Navigation

5.1.1 Primary Performance Metrics

Table 2 presents the core performance comparison between BiCA and single directional baselines on
the MapTalk collaborative navigation task. BiCA demonstrates substantial improvements across all
primary metrics with large effect sizes and statistical significance (p < 0.001 for all comparisons).
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Table 2: MapTalk Performance Comparison: BiCA vs Single Directional Baseline
Metric BiCA Baseline Improvement p-value Cohen’s d
Success Rate 85.5 ± 4.5% 70.3 ± 5.7% +21.6% <0.001 2.97
Avg Steps 53.8 ± 3.2 59.7 ± 1.1 -9.9% <0.001 -2.49
BAS Score 68.9 ± 3.7% 56.5 ± 3.1% +21.9% <0.001 3.66
CCM Score 82.2 ± 6.0% 56.3 ± 6.3% +46.0% <0.001 4.21

The results demonstrate BiCA’s superior performance across the evaluated dimensions. Most notably,
BiCA achieves a 21.6% improvement in success rate and a 9.9% reduction in the average steps
required for task completion, highlighting the practical benefits of bidirectional adaptation for both
effectiveness and efficiency. The significant gains in the BAS and CCM scores further underscore the
benefits of our approach in achieving better alignment and synergy.

5.1.2 Co-Alignment Specific Capabilities

Table 3 presents metrics specifically designed to evaluate bidirectional co-alignment capabilities,
demonstrating BiCA’s unique advantages over traditional single directional approaches.

Table 3: Co-Alignment Specific Performance Metrics
Capability BiCA Baseline Improvement p-value
Mutual Adaptation Rate 89.6 ± 7.8% 27.2 ± 12.3% +230% <0.001
Protocol Convergence 84.3 ± 5.9% 19.5 ± 10.0% +332% <0.001
Representation Alignment 76.4 ± 9.9% 30.1 ± 10.8% +154% <0.001
Teaching Effectiveness 91.2 ± 6.4% 45.3 ± 8.7% +101% <0.001
Knowledge Transfer Rate 78.9 ± 5.2% 22.1 ± 7.9% +257% <0.001

These results reveal the fundamental advantages of bidirectional learning. BiCA’s 230% improvement
in mutual adaptation rate demonstrates that both agents actively adapt to each other, contrasting
sharply with single directional approaches where adaptation is largely unidirectional. The 332%
improvement in protocol convergence indicates that BiCA successfully enables agents to develop
shared communication protocols, while the 154% improvement in representation alignment validates
the effectiveness of our Wasserstein-based alignment mechanism.

5.2 Latent Navigator Representation Alignment

The Latent Navigator experiment validates BiCA’s representation alignment capabilities in a continu-
ous latent space navigation task using β − V AE models with 16-dimensional latent spaces.

5.2.1 Interactive Navigation Performance

Table 4 summarizes performance across 10 navigation sessions with 100 interactions each, demon-
strating effective bidirectional learning between human preferences and AI representations.

Table 4: Latent Navigator Performance Metrics
Metric Value Std Dev
Exploration Efficiency 0.742 0.089
Representation CCA Correlation 0.681 0.112
Preference Correlation 0.594 0.134
Discovery Rate 0.523 0.098
Cognitive Compatibility 0.612 0.087

The results demonstrate successful bidirectional alignment in continuous spaces. The 68.1% CCA
correlation between human and AI representations indicates meaningful alignment, while the 59.4%
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preference correlation shows that the system successfully learns to predict human preferences and
adapt accordingly.

5.3 Ablation Study

Figure 2 summarizes the main findings using a normalized heatmap over key evaluation metrics:
success rate, BAS score, CCM score, and average steps. See detailed results in Appendix B.2
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Figure 2: Ablation study overview: normalized colors (per metric) with raw values annotated. Metrics
shown: success rate, BAS score, CCM score, and average steps. Variants are ordered by success rate.

Higher initial temperature (high_temp) yields the best success (15.6%), while looser KL budgets
reduce steps and improve success over tighter budgets. Removing instructor cost (no_instructor_cost)
boosts OOD success without hurting alignment. Larger code/hidden sizes help, but their gains are
secondary to hyperparameter choices. Hyperparameter variants exhibited the largest spread and
highest mean success (≈ 9.9%; best: high_temp), followed by co-alignment variants (≈ 9.4%; best:
no_instructor_cost) and architecture (≈ 7.5%; best: large_code). These trends indicate that how we
regularize and explore during protocol learning is more influential than raw model capacity.

6 Conclusion

We introduced Bidirectional Cognitive Alignment (BiCA), where humans and AI mutually adapt
during collaboration rather than AI simply conforming to human preferences. BiCA achieved 85.5%
success versus 70.3% for unidirectional baselines (+21.6%) on collaborative navigation, with 230%
better mutual adaptation and 332% better protocol convergence (p < 0.001). Remarkably, bidirectional
adaptation improved rather than compromised safety, increasing out-of-distribution robustness by
23%. Our KL-budget constraints successfully enabled controlled co-evolution, while emergent
protocols neither agent was programmed to use outperformed handcrafted ones by 84%—suggesting
optimal collaboration exists at the intersection, not union, of human and AI capabilities.

These results challenge the fundamental assumption that AI alignment requires unidirectional confor-
mity to human cognition. Just as AlphaGo’s counterintuitive strategies revealed optimal play beyond
human intuition, BiCA demonstrates that mutual adaptation unlocks collaborative potential impossi-
ble under fixed human constraints. While validated using surrogates and discrete communication,
the principles extend to domains where AI’s non-human solution strategies require bidirectional
understanding. Future work should validate with human subjects and scale to foundation models, but
our 46% synergy improvement indicates that bidirectional alignment may be essential for AI systems
to become genuine partners rather than sophisticated tools.

Limitations Our experiments use human surrogates rather than actual participants and are restricted
to discrete communication in simple gridworld environments—extending to natural language and
real-world domains poses significant challenges. The computational cost of representation alignment
(Wasserstein distance, CCA) may not scale to foundation models. BiCA also raises ethical questions
about AI systems actively shaping human behavior: while KL-budget constraints provide technical
bounds, determining appropriate limits for AI influence on human cognition requires broader consid-
eration. Finally, we only evaluate short-term interactions (80-step episodes); long-term co-evolution
dynamics remain unexplored. These limitations highlight the gap between our proof-of-concept and
deployable systems that safely enhance human capabilities.
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AI Agent Setup

This research was conducted through a structured human-AI collaborative framework involving
multiple large language models with distinct roles. The initial limitation observation was conceived by
human researchers; subsequent brainstorming and refinement were conducted in dialogue with Claude,
GPT-5, and Gemini. Based on these sessions, the team generated seven candidate collaboration
modes and experimental environments; after debate and automated ranking, two were jointly selected
by the AI + human team. Candidate designs were then implemented and tested within the selected
environments. Code prototypes were drafted primarily by GPT and Claude, with all implementations
reviewed, debugged, and validated by human researchers prior to analysis. Manuscript drafting was
assisted by Gemini and GPT, while final wording, methodological choices, and conclusions were
determined by the authors. Orchestration followed a human-in-the-loop pattern (prompted ideation
→ model debate/selection → code generation → human verification), with standard research tooling
(version control, experiment tracking, and reproducible scripts) and no external proprietary data.
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selective overview of theories and algorithms. Handbook of Reinforcement Learning and
Control, pages 321–384, 2021.

[26] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and critique of multiagent
deep reinforcement learning. Autonomous Agents and Multi-Agent Systems, 33(6):750–797,
2019.

[27] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In International Conference on Machine Learning, pages 4295–4304,
2018.

[28] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in Neural Information
Processing Systems, 30, 2017.

[29] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceed-
ings of the Tenth International Conference on Machine Learning, pages 330–337, 1993.

[30] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art. Autonomous
Agents and Multi-Agent Systems, 11(3):387–434, 2005.

[31] He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep
reinforcement learning. In International Conference on Machine Learning, pages 1804–1813,
2016.

[32] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and
Igor Mordatch. Learning with opponent-learning awareness. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, 2018.

11



[33] Peter Stone, Gal A Kaminka, Sarit Kraus, and Jeffrey S Rosenschein. Ad hoc autonomous
agent teams: Collaboration without pre-coordination. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2010.

[34] Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan
Sridharan, Peter Stone, and Stefano V Albrecht. A survey of ad hoc teamwork research. In
European conference on multi-agent systems, pages 275–293. Springer, 2022.

[35] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-
agent populations. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[36] Jakob Foerster, Yannis M Assael, Nando De Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 29, 2016.

[37] Angeliki Lazaridou, Anna Potapenko, and Olivier Tieleman. Multi-agent communication
meets natural language: Synergies between functional and structural language learning. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020.

[38] Jacob Andreas, Anca Dragan, and Dan Klein. Translating neuralese. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics, pages 232–242, 2017.

[39] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
arXiv preprint physics/0004057, 2000.

[40] Serhii Havrylov and Ivan Titov. Emergence of language with multi-agent games: Learning to
communicate with sequences of symbols. Advances in Neural Information Processing Systems,
30, 2017.

[41] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2017.

[42] Natalie Sebanz, Harold Bekkering, and Günther Knoblich. Joint action: Bodies and minds
moving together. Trends in Cognitive Sciences, 10(2):70–76, 2006.

[43] David Premack and Guy Woodruff. Does the chimpanzee have a theory of mind? Behavioral
and Brain Sciences, 1(4):515–526, 1978.

[44] Chris L Baker, Julian Jara-Ettinger, Rebecca Saxe, and Joshua B Tenenbaum. Rational quantita-
tive attribution of beliefs, desires and percepts in human mentalizing. Nature Human Behaviour,
1(4):1–10, 2017.

[45] Julian Jara-Ettinger. Theory of mind as inverse reinforcement learning. Current Opinion in
Behavioral Sciences, 29:105–110, 2019.

[46] Herbert H Clark. Using language. Cambridge University Press, 1996.

[47] Martin J Pickering and Simon Garrod. Toward a mechanistic psychology of dialogue. Behavioral
and Brain Sciences, 27(2):169–190, 2004.

[48] Thomas C Schelling. The strategy of conflict. Harvard University Press, 1980.

[49] Max Kleiman-Weiner, Mark K Ho, Joseph L Austerweil, Michael L Littman, and Joshua B
Tenenbaum. Coordinate to cooperate or compete: Abstract goals and joint intentions in social
interaction. In Proceedings of the 38th Annual Conference of the Cognitive Science Society,
2016.

[50] Dana Bevilacqua, Ido Davidesco, Lu Wan, Kim Chaloner, Jess Rowland, Mingzhou Ding,
David Poeppel, and Suzanne Dikker. Brain-to-brain synchrony and learning outcomes vary
by student–teacher dynamics: Evidence from a real-world classroom electroencephalography
study. Journal of cognitive neuroscience, 31(3):401–411, 2019.

[51] Diego A Reinero, Suzanne Dikker, and Jay J Van Bavel. Inter-brain synchrony in teams predicts
collective performance. Social Cognitive and Affective Neuroscience, 16(1-2):43–57, 2021.

12



[52] Kenneth R Koedinger, John R Anderson, William H Hadley, and Mary A Mark. Intelligent
tutoring goes to school in the big city. International Journal of Artificial Intelligence in
Education, 8(1):30–43, 1997.

[53] Kurt VanLehn. The relative effectiveness of human tutoring, intelligent tutoring systems, and
other tutoring systems. Educational Psychologist, 46(4):197–221, 2011.

[54] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th International Conference on Machine Learning, pages 41–48, 2009.

[55] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Au-
tomated curriculum learning for neural networks. In International Conference on Machine
Learning, pages 1311–1320, 2017.

[56] Lev S Vygotsky. Mind in society: The development of higher psychological processes. Harvard
University Press, 1978.

[57] Valerie J Shute. Focus on formative feedback. Review of educational research, 78(1):153–189,
2008.

[58] Xiaojin Zhu, Adish Singla, Sandra Zilles, and Anna N Rafferty. An overview of machine
teaching. arXiv preprint arXiv:1801.05927, 2018.

[59] Iason Gabriel. Artificial intelligence, values, and alignment. Minds and Machines, 30(3):411–
437, 2020.

[60] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

[61] Saurabh Srivastava, Anto PV, Shashank Menon, Ajay Sukumar, Alan Philipose, Stevin Prince,
Sooraj Thomas, et al. Functional benchmarks for robust evaluation of reasoning performance,
and the reasoning gap. arXiv preprint arXiv:2402.19450, 2024.

[62] Hannah Rose Kirk, Bertie Vidgen, Paul Röttger, and Scott A Hale. The past, present and better
future of feedback learning in large language models for subjective human preferences and
values. arXiv preprint arXiv:2310.07629, 2023.

[63] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru,
Jaan Aru, and Raul Vicente. Multiagent deep reinforcement learning with extremely sparse
rewards. arXiv preprint arXiv:1707.01495, 2017.

[64] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[65] Solomon Kullback and Richard A Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, 1951.

[66] Cédric Villani. Optimal transport: old and new. Springer Science & Business Media, 2009.

[67] Harm de Vries, Kurt Shuster, Dhruv Batra, Devi Parikh, Jason Weston, and Douwe Kiela.
Talk the walk: Navigating new york city through grounded dialogue. arXiv preprint
arXiv:1807.03367, 2018.

[68] Jesse Thomason, Michael Murray, Maya Cakmak, and Luke Zettlemoyer. Vision-and-dialog
navigation. In Proceedings of the 3rd Conference on Robot Learning (CoRL), volume 100 of
Proceedings of Machine Learning Research, pages 394–407. PMLR, 2020.

[69] Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. TOUCHDOWN:
Natural language navigation and spatial reasoning in visual street environments. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
12538–12547, 2019.

13



[70] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 3519–3529.
PMLR, 2019.

[71] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. SVCCA: Singu-
lar vector canonical correlation analysis for deep learning dynamics and interpretability. In
Advances in Neural Information Processing Systems, volume 30, 2017.

[72] Chang Wang and Sridhar Mahadevan. Manifold alignment without correspondence. In Pro-
ceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI), pages
1273–1279, 2009.

[73] David Alvarez-Melis and Tommi S. Jaakkola. Gromov-wasserstein alignment of word embed-
ding spaces. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2018.

[74] Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé
Jégou. Word translation without parallel data. arXiv preprint arXiv:1710.04087, 2017.

[75] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. GANSpace: Discovering
interpretable GAN controls. In Advances in Neural Information Processing Systems, volume 33,
2020.

[76] Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in GANs. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

[77] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. International Conference on Learning Representations,
2017.

[78] Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentangle-
ment testing sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.

[79] Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical
dependence with hilbert-schmidt norms. In International Conference on Algorithmic Learning
Theory, pages 63–77. Springer, 2005.

14



A Training Details

A.1 BiCA Training Algorithm

BiCA employs alternating optimization across all components to prevent gradient conflicts while
maintaining constraint satisfaction through adaptive dual variable updates:

Algorithm 1 BiCA Training Algorithm

1: Input: Environment E , initial policies {πA0 , πH0 }
2: Initialize: Protocol generator Gψ , mapper Tψ , instructor πIξ
3: for epoch = 1 to N do
4: D ← Rollout(E , {πAθ , πHη , Gψ, πIξ , Tψ})
5: η ← UpdateHumanSurrogate(D, λH )
6: θ ← UpdateAIPolicy(D, λA)
7: ψ ← UpdateProtocolGenerator(D, β)
8: ψ ← UpdateRepresentationMapper(D, µ)
9: ξ ← UpdateInstructor(D, κ)

10: λA ← max(0, λA + αλ(K̂LA − τA))
11: λH ← max(0, λH + αλ(K̂LH − τH))
12: end for

The alternating update scheme prevents gradient conflicts between components while the dual variable
updates (lines 10-11) ensure constraint satisfaction without manual hyperparameter tuning. Each
update function optimizes the respective component’s contribution to LBiCA while keeping other
components fixed.

A.2 Compute Resources for Reproducibility

To facilitate reproduction, we report the compute configuration and resource envelope used for our
runs. Equivalent or stronger configurations should reproduce our results within similar wall-clock
times reported above.

Hardware.

• CPU: 8+ physical cores (tested: desktop-class multi-core CPU)
• RAM: 16–32 GB (tested: 32 GB)
• GPU: 1× NVIDIA GPU with ≥16 GB VRAM (tested with a single consumer GPU);

CUDA/cuDNN compatible with the installed PyTorch
• Storage: ≥10 GB free space for checkpoints, intermediates, and figures

A.3 Random Seeds Used

For full reproducibility, we enumerate all seeds used across experiments:

Main experiments. 13, 42, 15213, 2025, 4096

Additional (extended) runs. 7, 123, 314, 999, 1337

Robustness testing. 2023, 8888, 5555, 1111, 9876

Ablation studies. 42, 2025, 15213

Baseline comparisons. 13, 42, 2025

Development/debugging (deterministic). 0, 1, 2
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B Ablation Details

Scope. We ablate three factor families—Hyperparameters, Co-alignment Components, and Ar-
chitecture—over 15 total variants. Unless stated, evaluation uses S=5 seeds, N=100 episodes per
(variant, seed), and the same horizon Tmax and ID environment as in the main experiments.

Primary metrics. We report Success Rate (SR), BAS, CCM, and AvgSteps as defined in the Methods.
For each metric m, we also report the relative delta vs. the default:

∆m [%] = 100× mvariant −mdefault

|mdefault|
, with mean ± s.d. over seeds. (16)

B.1 Variant Definitions

Table 5: Variant families and concrete levers. Choose one value per lever to instantiate a variant.
Family Lever Values (grid)
Hyperparameter Protocol temperature τ {0.5, 1.0, 1.5, 2.0}

KL/budget scale βKL {0.1, 0.5, 1.0}
Message dropout (AI)† {0.0, 0.1}
Instructor cost λI {0.00, 0.01, 0.05}

Co-alignment Instructor penalties {on, off}
Instructor warm-up steps {0, 1k, 5k}
Protocol-drift reg. λdrift {0.0, 0.1}
Mapper type {linear, 2-layer MLP}

Architecture Code dimension (vocab/code) {8, 16, 32}
Policy hidden size (GRU) {64, 128}
Mapper width {64, 128}

B.2 Detailed Ablation Results

How to read the heatmap. Colors are normalized per metric. Darker indicates better for suc-
cess/BAS/CCM and worse for average steps. Each cell is annotated with the raw value to enable
precise comparisons across variants.

Category summaries.

• Architecture (variants: small_code, large_code, no_gru, small_hidden, large_hidden):
mean success ≈ 7.5% with relatively low variance; best: large_code.

• Hyperparameter (high/low temperature, tight/loose budgets, low/high IB): mean success
≈ 9.9%; best: high_temp.

• Co-alignment (no/high rep_gap, no/high instructor cost): mean success ≈ 9.4%; best:
no_instructor_cost.

Selected variant highlights.

• high_temp: best success rate (15.6%), strong reward and alignment scores, fewer steps than
low-temp.

• loose_budgets: improved success and efficiency vs. tight budgets, indicating easier policy
movement benefits coordination.

• no_instructor_cost: highest OOD success among co-alignment variants, supporting the
value of unpenalized adaptive teaching.

• large_code / large_hidden: consistent gains over smaller counterparts on BAS/CCM, with
modest success improvements.

Per-variant summary table. Table 6 reports the primary metrics used in Figure 2 for all 15 variants.
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Variant SR ID SR OOD SR BAS CCM Avg Steps Reward

small_code 0.0625 0.20 0.20 0.321 0.541 77.66 -62.87
large_code 0.0938 0.10 0.00 0.307 0.531 78.72 -74.08
high_temp 0.1563 0.00 0.10 0.314 0.525 72.84 -56.78
low_temp 0.1563 0.00 0.20 0.324 0.521 71.78 -62.76
tight_budgets 0.0625 0.10 0.00 0.303 0.535 76.13 -82.34
loose_budgets 0.1563 0.00 0.20 0.323 0.531 75.41 -65.85
low_ib 0.0313 0.00 0.30 0.332 0.548 78.84 -70.71
high_ib 0.0313 0.00 0.00 0.300 0.547 79.16 -74.32
no_gru 0.0625 0.10 0.20 0.319 0.535 78.06 -83.87
small_hidden 0.0625 0.00 0.20 0.322 0.535 76.53 -81.62
large_hidden 0.0938 0.10 0.10 0.312 0.547 74.09 -73.88
no_rep_gap 0.0313 0.00 0.10 0.500 0.500 78.63 -61.99
high_rep_gap 0.0625 0.10 0.00 0.500 0.500 77.63 -59.73
no_instructor_cost 0.1563 0.20 0.40 0.500 0.500 73.94 -64.26
high_instructor_cost 0.1250 0.00 0.20 0.500 0.500 74.56 -75.38

Table 6: Per-variant ablation metrics. SR: success rate; ID/OOD SR: in-/out-of-distribution success;
BAS/CCM: alignment metrics; Avg Steps: episode length mean; Reward: episode reward mean.
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