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Abstract

Objectives: To improve prediction of chronic kidney disease (CKD) progression to end-stage renal disease (ESRD) using machine learning (ML)
and deep learning (DL) models applied to integrated clinical and claims data with varying observation windows, supported by explainable artifi-
cial intelligence (Al) to enhance interpretability and reduce bias.

Materials and Methods: \We utilized data from 10 326 CKD patients, combining clinical and claims information from 2009 to 2018. After prepro-
cessing, cohort identification, and feature engineering, we evaluated multiple statistical, ML and DL models using 5 distinct observation
windows. Feature importance and SHapley Additive exPlanations (SHAP) analysis were employed to understand key predictors. Models were
tested for robustness, clinical relevance, misclassification patterns, and bias.

Results: Integrated data models outperformed single data source models, with long short-term memory achieving the highest area under the
receiver operating characteristic curve (AUROC) (0.93) and F1 score (0.65). A 24-month observation window optimally balanced early detection
and prediction accuracy. The 2021 estimated glomerular filtration rate (eGFR) equation improved prediction accuracy and reduced racial bias,
particularly for African American patients.

Discussion: Improved prediction accuracy, interpretability, and bias mitigation strategies have the potential to enhance CKD management, sup-
port targeted interventions, and reduce health-care disparities.

Conclusion: This study presents a robust framework for predicting ESRD outcomes, improving clinical decision-making through integrated mul-

tisourced data and advanced analytics. Future research will expand data integration and extend this framework to other chronic diseases.
Key words: chronic kidney disease; end-stage renal disease; machine learning; clinical and claims data integration; predictive modeling.

Introduction

Chronic kidney disease (CKD) is a complex, multimorbid con-
dition marked by a gradual decline in kidney function, which
can ultimately progress to end-stage renal disease (ESRD).!
With a global prevalence of CKD ranging from 8% to 16%,
and estimates suggesting that around 5%-10% of individuals
diagnosed with CKD eventually reach ESRD,? they represent a
major public health challenge, particularly due to its strong
associations with diabetes and hypertension.®> Chronic kidney
disease progression is classified into S stages, culminating in
ESRD, where kidney function drops to 10%-15% of normal
capacity, necessitating dialysis or transplantation for patient
survival." The economic impact of CKD is significant, with a
relatively small proportion of Medicare CKD patients in the
United States contributing to a disproportionately high share
of Medicare expenses, particularly when they progress to
ESRD. Additionally, more than one-third of ESRD patients are
readmitted within 30 days of discharge, underscoring the crit-
ical need for early detection and management of CKD to pre-
vent its progression to ESRD and to reduce health-care costs.*
Previous CKD progression prediction efforts used either elec-
tronic health record (EHR) clinical data® or administrative
claims.®” These approaches often use limited features, not fully
capturing CKD progression complexity. Sharma et al® developed

a claims-based model to identify CKD patients at hyperkalemia
risk, while Krishnamurthy et al® predicted CKD onset using
comorbidities and medications. Claims data typically lack clini-
cal data’s granularity. Tangri et al’ used age, gender, and esti-
mated glomerular filtration rate (eGFR)' to predict ESRD
progression, and Sun et al'! utilized serum creatinine and urine
protein levels for high-risk patient identification. Models using
only clinical data may miss complete health-care system interac-
tions, struggle with missing data and inconsistent recording, and
overlook socioeconomic factors and health-care utilization pat-
terns, limiting their applicability across diverse populations.

This study bridges a critical gap by developing a frame-
work that utilizes integrated clinical and claims data rather
than isolated data sources. By minimizing the observation
window needed for accurate predictions, our approach bal-
ances clinical relevance with patient-centered practicality.
This integration enhances both predictive accuracy and clini-
cal utility, enabling more informed decision-making to
improve patient outcomes.

Objective

This research evaluates predictive models for CKD progres-
sion to ESRD using integrated clinical and claims data.
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Figure 1. A timeline illustration of observation windows for CKD progression to ESRD. The observation starts at CKD stage 3. Objective 1 estimates the
probability of ESRD occurrence after the observation window, using clinical and claims data within the observation window, while objective 2 identifies
the optimal observation window that maximizes predictive performance. Abbreviations: CKD, chronic kidney disease; ESRD, end-stage renal disease.

Figure 1 illustrates our study design, where the observation
window begins at the initial diagnosis of CKD stage 3 (¢=0).
Although patients may progress through subsequent CKD
stages (stages 4 and 5) during this observation period, our
cohort specifically excludes those developing ESRD within
this timeframe. This ensures that predictive modeling utilizes
only pre-ESRD data for forecasting future ESRD onset.

* Qur primary objective, ESRD risk prediction, aims to esti-
mate the probability that a patient diagnosed with CKD
stage 3 will develop ESRD after the observation window,
represented as follows:

P(ESRDt =1 ‘ 1> Lobss Xclinicalj(tobs)a Xclaimj(tobs)):

where Xjinicali (fobs)> Xclaimi (fobs) denote the clinical and
claims data observed up to time #,,, for patient 7.

* To identify the optimal observation window T, that
provides the best performance across all candidate win-
dows s (6, 12, 18, 24, and 30 months), ensuring accu-
rate predictions while minimizing the length of the
observation window required:

Tops = arg Performance(t),

max
1€{6,12,18,24,30}

where Performance(t) is evaluated based on key predictive
metrics: F1 score,'? area under the receiver operating charac-
teristic curve (AUROC),"? and area under the precision-recall
curve (AUPRC).M

Data sources

This study utilized 2 integrated datasets: administrative
claims data and clinical data. The claims dataset includes
patient health-care interactions, spanning from 2009 to
2018, containing diagnosis codes, treatment records, and
health-care costs for individuals diagnosed with CKD. The
clinical dataset from EHRs contains laboratory results,
patient demographics, diagnostic details, and medication
records, which was truncated to match the 10-year span of
the claims data for consistency of integration. See Appendix
S1 for data details.

Methods

As illustrated in Figure 2A, our comprehensive methodology
for predicting CKD progression to ESRD consists of 3 pri-
mary stages: data preparation, modeling, and additional
analyses. Within the modeling stage, we employ a 2-phase
analytical framework that first systematically evaluates vari-
ous predictive models across multiple observation windows
(but the same patient cohort for consistent comparisons) to
determine optimal performance, and subsequently retrains
the most effective model on the cohort for each observation
window for practical clinical application. This framework
bridges statistical rigor and clinical relevance, facilitating
actionable insights for nephrologists managing patients with
CKD stage 3 and above.

Data preparation

Data preprocessing

We removed duplicate records to prevent redundancy and
bias in the analysis. Entries lacking CKD diagnoses were
excluded to maintain relevance to study objectives, along
with claims containing negative values (likely data entry
errors). The cleaned claims dataset comprised 5 317 178
claims across 7129 unique patients, while the refined clinical
dataset included 433 421 laboratory records for 10 326
patients. These datasets were integrated using unique patient
IDs to provide a comprehensive view of each patient’s medi-
cal and claims history.

To address missing data, we employed multiple imputation
via chained equations.'”> Continuous numerical features were
standardized, and skewed variables were log-transformed'®
to stabilize variance and mitigate outliers. For laboratory val-
ues missing unit specifications, we used distribution detection
and adjustment'” to identify outliers and harmonize units
across records (medical expert-advised ranges in
Appendix S2).

Cohort identification

As depicted in Figure 2B, cohorts were curated through a
multistep process: patients at CKD stage 3 were selected and
an observation window—18 months in the example, but
adjustable per study—was applied. Only individuals with
complete clinical and claims data throughout this window
were retained, and those who progressed to ESRD within it
were excluded, yielding a cohort for analysis.
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Feature engineering

Feature engineering involved identifying predictive variables
essential for modeling. For claims data, we derived 2 main
groups of features: cost-based features, including claim
counts, aggregate patient costs, cost ranges, and cost stand-
ard deviations from inpatient, outpatient, professional, phar-
macy, and vision claims; and comorbidity-based features,
such as CKD stage 3 duration, emergency department visit
frequency, and critical comorbidities (eg, hypertension, dia-
betes, phosphatemia).

Clinical data features were categorized based on nephrol-
ogy expert consultations, relevant literature, and dataset
characteristics into demographic features, including age, gen-
der, ethnicity, and body mass index (BMI) as established
CKD progression indicators; laboratory features comprising
essential clinical parameters like eGFR, hemoglobin, phos-
phorus, serum calcium, and bicarbonate (excluding urine
albumin-to-creatinine ratio [UACR]'® and sodium due to
insufficient data availability); and additional comorbidity fea-
tures, capturing conditions such as cardiovascular disease,
anemia, and metabolic acidosis, which are known to influ-
ence CKD outcomes.

Statistical analyses compared variables between patients
progressing to ESRD and those who did not. For continuous
variables, data were assessed for normality; normally distrib-
uted variables were analyzed using independent #-tests to com-
pare group means. Nonnormally distributed variables
underwent logarithmic transformation during preprocessing
before applying #-test. Categorical variables were expressed as
frequencies (percentages) and compared using chi-squared
tests. Statistical significance was set at P < .05 for all analyses.

Modeling and validation

We trained both machine learning (ML) and deep learning
(DL) models on stratified train/validation/test splits to pre-
serve class proportions, and applied SMOTE??° to the train-
ing data to oversample the minority class.

ML methods

We employed logistic regression (LR)?! as our baseline model
for ESRD progression probability estimation. We extended
our analysis to random forest (RF)** and XGBoost,>* evalu-
ating performance via k-fold cross-validation.”* Random for-
est utilizes multiple decision trees to enhance accuracy while
reducing overfitting. XGBoost sequentially builds models to
correct previous errors, proving highly effective for struc-
tured data.

DL methods

To develop a robust predictive model for CKD progression to
ESRD, we adopted methodologies from prior studies”** by
constructing longitudinal data representation with 3-month
intervals following initial CKD stage 3 diagnosis. These inter-
vals were sequentially indexed as timestamps (0 for months
0-3, 1 for months 3-6, etc.).

This temporal segmentation approach serves several pur-
poses, capturing CKD’s temporal evolution, reflecting its
gradual progression, aligning with clinical guidelines recom-
mending periodic nephrologist visits, and accommodating
potential time lags between clinical events and their corre-
sponding claims data. These lags, particularly notable for
critical events such as transplantation or dialysis initiation,
exhibit substantial variability both across and within patient

records, complicating consistent correction strategies.
Employing 3-month intervals mitigates the impact of these
temporal discrepancies, improving model accuracy. Numeri-
cal features were aggregated, categorical features encoded
binarily to reflect conditions or events, and baseline historical
records were analyzed to adjust for preexisting conditions,
thereby ensuring accurate representation of CKD progres-
sion. This timestamp-based structure allows models to cap-
ture disease progression dynamics and identify critical
temporal patterns signaling heightened ESRD risk.

We evaluated multiple DL architectures, including convo-
lutional neural networks (CNNs)?*® for feature extraction;
recurrent neural networks (RNNs),?” long short-term mem-
ory (LSTM) networks,*® and gated recurrent units (GRUs)>’
for modeling temporal dependencies; and temporal convolu-
tional networks (TCNs)*® for sequence modeling. These
architectures were selected to optimize prediction accuracy of
ESRD progression and improve identification of associated
risk factors. Detailed implementation information is available
in Appendix S4.

To maximize clinical relevance, our analytical framework
employs a 2-phase approach (as illustrated in Figure 2A,
stage 2). First, we systematically compare all modeling tech-
niques mentioned above across multiple observation win-
dows to identify optimal predictive performance. Second,
recognizing that clinicians cannot predetermine a patient’s
progression timeline to ESRD in real-world settings, we
retrain the best-performing model using the complete cohort
with the optimal observation window. This clinically ori-
ented model then undergoes comprehensive explainable Al
analysis to identify key predictive features and temporal pat-
terns. This approach bridges the gap between statistical per-
formance and practical clinical implementation, providing
actionable insights for nephrologists.

Explainable Al methods

After identifying the best-performing model and optimal
observation window, we employed 2 complementary explain-
able Al techniques to understand the features driving these
predictions. At the cohort level, we utilized feature impor-
tance analysis to identify key predictive variables across the
population. At the individual level, we applied SHapley Addi-
tive exPlanations (SHAP) analysis to provide detailed,
patient-specific insights into model predictions.

Additional analyses

Beyond the core dual-phase predictive framework outlined
above, we conducted several additional analyses to enhance
the robustness and fairness of our ESRD prediction models.
Specifically, we investigated cases of model misclassification
to identify underlying patterns and contributing factors, pro-
viding deeper insights into prediction limitations. Further-
more, we assessed the influence of recently updated eGFR
equation on racial disparities within CKD progression predic-
tions, aiming to ensure clinical fairness and improve the accu-
racy of our predictive models.

Analysis of model misclassifications

We examined predictive probability distributions across our
sample set to analyze misclassifications from our optimal
model. We evaluated both false positives (type I errors) and
false negatives (type II errors) in ESRD progression predic-
tions to identify patterns contributing to incorrect
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Figure 2. Framework for CKD progression prediction. (A) Three-stage pipeline for predicting CKD progression to ESRD. Stage 1: feature engineering, data
preprocessing, and cohort identification using clinical and claims data. Stage 2: (2A) systematic evaluation of observation windows with ML/DL models;
(2B) retraining the optimal model on the filtered cohort from the optimal observation window, followed by explainable artificial intelligence (Al) analysis.
Stage 3: Additional analyses including bias detection and misclassification assessment. (B) Multistep cohort curation process for longitudinal CKD
analysis. Starting with initial selection of patients at CKD stage 3, an adjustable observation window (18 months shown) was applied. Only patients with
complete clinical and claims data throughout this period were retained, while those progressing to ESRD within the observation window were excluded,
ensuring a cohort for analysis (highlighted in yellow) with uninterrupted longitudinal records. Abbreviations: CKD, chronic kidney disease; DL, deep

learning; ESRD, end-stage renal disease; ML, machine learning.

predictions. This error analysis provides insights into model
limitations and highlights potential areas for refinement, ulti-
mately improving clinical reliability and decision support.

Impact of updated eGFR equations on racial bias in CKD
predictions

The 2021 workgroup led by the National Kidney Foundation
and American Society of Nephrology recommended an

updated CKD-EPI equation that removed race coefficients,
addressing concerns about racial bias in eGFR calcula-
3132 such as race-based components lacking biological
basis and risking the perpetuation of health-care
disparities.®**

For our study using data from 2009 to 2018, we primarily
used the 2009 CKD-EPI equation since this was the standard
clinical calculation during the study period and informed
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Figure 3. Overview of CKD stage distribution in merged data across observation windows. (A) Variation in CKD stage distribution of merged data as a
function of different observation window lengths. (B) Comparison of CKD stage distribution across claims, clinical, and merged data with a 30-month

observation window. Abbreviation: CKD, chronic kidney disease.

actual physician decisions and CKD staging. We additionally
applied the 2021 race-free equation in our further analysis
section to compare outcomes and assess improvements in
prediction accuracy and equity, particularly for minority
populations. Note that adopting the updated equation may
affect CKD stage classification, potentially altering cohort
composition and model predictions.

Results
Cohort for analysis and data characteristics

In this subsection, we present data integration trends and
cohort characteristics. Figure 3A shows patient distribution
across CKD stages with varying observation windows.
Patient numbers decline as windows extend from 6 to 30
months due to insufficient data or ESRD progression within
the window. The ESRD columns represent patients who pro-
gressed to ESRD after their respective observation windows.
While some patient losses may be attributed to mortality, we
lack confirmatory data.

To ensure model consistency and fair comparability, we
trained and tested our models using the same patient cohort.
Recognizing the issue of cohort sizes decreasing as the obser-
vation window lengthens, we selected patients who had at
least 30 months of follow-up data after their CKD stage 3
diagnosis. We specifically chose 30 months because it repre-
sents the smallest cohort across the range of observation win-
dows; thus, patients in this 30-month cohort are also
guaranteed to be present in all shorter observation windows.
For the training datasets, we utilized this same group of
patients but varied the length of the data included according
to different observation windows. This approach allowed us
to systematically assess how different observation windows
affected model performance and to identify the optimal win-
dow based on test dataset results.

After requiring >30 months of post-stage 3 data, we com-
pared claim-only (7=35518) and clinical-only (7=6842)
cohorts to the merged sample. Combining data reduced the
cohort to 1422 patients for the 24-month window (optimal)
and 1355 for the 30-month window (Figure 3B), reflecting
exclusion of those lacking 1 data source and yielding a more
comprehensive dataset.

Table 1 summarizes characteristics of our 1422-patient
cohort; 86 (6%) progressed to ESRD, while 1336 did not.

Mean progression time from CKD stage 3 to ESRD was 4.82
+1.82 years. End-stage renal disease patients were younger
(69.13 vs 72.04 years, P <.001) with significant racial dis-
parities: African Americans showed higher progression rates
(14.0% vs 4.5%), while White patients had lower rates
(81.4% vs 93.0%, P <.001).

Hypertension was prevalent in both groups (99%), but dia-
betes was more common in ESRD patients (73.3% vs 59.0%,
P=.009). Secondary hyperparathyroidism and conduction
disorders were also significantly higher in the ESRD group.
Claims data showed slightly higher outpatient/professional
claims counts for ESRD patients (P =.039) but no significant
cost differences. Clinically, ESRD patients had lower eGFR
(17.21 vs 22.78, P<.001), lower hemoglobin (12.15 vs
14.25, P <.001), and more advanced CKD stages.

Performance comparison of models across datasets
To facilitate comprehension of model performance across dif-
ferent data sources, we present results using a 24-month
observation window, which yielded optimal performance
across most models. Tables 2-4 compare the predictive per-
formance of traditional ML and DL models across 3 scenar-
ios: claims data-only, clinical data-only, and merged data.

The results demonstrate several key findings across the dif-
ferent data sources. In the claims data-only scenario, DL
models, particularly LSTM (AUROC: 0.92, F1: 0.54) and
GRU (AUROC: 0.92, F1: 0.50), substantially outperformed
traditional ML approaches such as LR (AUROC: 0.72, F1:
0.33) and RF (AUROC: 0.74, F1: 0.36). For clinical data,
while the performance gap narrowed, DL models maintained
their advantage, with LSTM achieving the highest perform-
ance (AUROC: 0.88, F1: 0.60). Most notably, the merged
dataset combining both claims and clinical data yielded the
best overall performance, with LSTM achieving better results
across all metrics (AUROC: 0.93, F1: 0.65, AUPRC: 0.61).
Comprehensive results across observation windows are pro-
vided in Appendix SS5.

Key feature analysis using explainable Al
techniques

Leveraging the optimal 24-month window and our best
ESRD prediction model, we performed (1) cohort-level fea-
ture importance to pinpoint the most influential predictors
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Table 1. Data characteristics of the patient cohort for analysis (merged data, 24-month observation window, n=1422).

Progressed Non-progressed

Characteristics Missing data (%) to ESRD (n=86) to ESRD (n=1336) P
Demographic
Age (years) 0 69.13+12.37 72.04+11.25 <.001
Female 0 40 (46.5%) 721 (54.0%) 2149
Race 0 <.001

White 70 (81.4%) 1242 (93.0%)

African American 12 (14.0%) 60 (4.5%)

Others 4 (4.6%) 34(2.5%)
BMI 4 28.40+5.32 26.40+6.20 <.001
Comorbidities 0 85(99%) 1323 (99%) .863
Hypertension
Diabetes 0 63(73.3%) 788 (59.0%) .009
Anemia 0 55 (64.0%) 828 (62.0%) 714
Metabolic acidosis 0 22 (25.6%) 240 (18.0%) .077
Proteinuria 0 11 (12.8%) 227 (17.0%) 312
Secondary hyperparathyroidism 0 28 (32.6%) 240 (18.0%) <.001
Phosphatemia 0 4 (4.7%) 40 (3.0%) .39
Heart failure 0 6(7.0%) 120 (9.0%) 526
Stroke 0 1(1.2%) 40 (3.0%) .506
Conduction and dysrhythmias 0 4(4.7%) 214 (16.0%) .005
Claims-driven features 0 120+ 94 109+ 86 293
Count of pharmacy claims
Count of inpatient claims 0 3.85+3.41 3.74+3.62 773
Count of outpatient claims 0 27.78 +24.75 22.07+19.13 .039
Count of professional claims 0 105.37£77.56 87.43£68.02 .039
Net cost of pharmacy claims 0 1205311 596 10 44020 662 242
Net cost of inpatient claims 0 33909 =53 540 29 440 =32 541 446
Net cost of outpatient claims 0 9354+17 522 855417492 .682
Net cost of professional claims 0 1551218 657 1164012 748 .061
Range of claims costs 0 11352+32 606 8852+11550 481
Standard deviation of claims costs 0 831+1263 757 = 806 .593
Clinical-driven features 0 17.21+5.46 22.78 +5.66 <.001
eGFR
Hemoglobin 3 12.15+2.19 14.25+1.8 <.001
Bicarbonate 9 22.9+6.36 25.3+4.22 .001
Serum calcium 6 9.39+3.62 10.21+2.86 .042
Phosphorus 13 3.61+0.87 3.52+0.72 .350
CKD stage 3 duration 0 3.7+0.6 39=14 .0009
Occurrence of CKD stage 4 0 47 (54.7%) 298 (22.3%) <.001
Occurrence of CKD stage § 0 42 (48.8%) 277 (20.7%) <.001
Number of emergency department visits 16 2.63+2.18 2.01+1.99 .005

Continuous variables are shown as mean+SD and compared by independent #-test (log-transformed if nonnormal); categorical variables are shown as count
(percentage) and compared by chi-squared test. “Missing data (%)” indicates the proportion of missing observations for each variable. P-values are 2-sided,
with P <.05 denoting statistical significance. Abbreviations: CKD, chronic kidney disease; ESRD, end-stage renal disease.

across the population and (2) individual-level SHAP analysis
to generate patient-specific explanations of each prediction.

Cohort-level key feature identification

Our feature importance analysis of the optimal ML model,
XGBoost, revealed several key predictors for ESRD progres-
sion (see Figure 4A). The most critical feature was the pres-
ence of CKD stage 5 (S5), aligning with clinical literature and
expert feedback on its importance in predicting ESRD.
Claims-related features, such as the number of outpatient
claims (n7_claims_O) and total inpatient claim expenses (net
exp I), also ranked highly. The diverse types of top-ranked
features underscore the benefit of multisourced data integra-
tion, enhancing the model’s predictive power. This combina-
tion of clinical and claims data not only improves the
accuracy of the predictions but also supports more compre-
hensive and reliable decision-making in clinical practice.
However, while XGBoost’s feature importance reflects the
absolute contribution of each feature, it does not specify
whether the influence is positive or negative.

Feature impact at the individual patient level using SHAP
analysis

To support personalized decision-making, we applied SHAP
analysis to quantify the features driving each patient’s risk
prediction. Figure 4B presents SHAP force plots for 2 cor-
rectly predicted high-risk patients, patient X and patient Y,
both diagnosed with CKD S5 but exhibiting distinct risk
profiles.

For patient X, elevated risk is driven primarily by CKD S5
and a high volume of outpatient claims (7 claims DR min),
while higher eGFR levels and the absence of certain clinical
markers mitigate that risk. In contrast, patient Y’s lower risk
contribution—despite the same S5 diagnosis—stems from
younger age, fewer minimum inpatient claims (net_exp_O_-
min), and lower minimum eGFR values.

Analysis of model misclassifications: type | and
type Il errors

All subsequent analyses utilize our optimal 24-month obser-
vation window and the LSTM model, which demonstrated
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Table 2. Model performance for prediction of ESRD, using claims data-
only (24-month observation window, n=1422).

Model performance metric

Model type Model F1score AUROC AUPRC

Machine learning Logistic regression  0.33 0.72 0.44
Random forest 0.36 0.74 0.48
XGBoost 0.39 0.75 0.47

Deep learning CNN 0.45 0.82 0.50
RNN 0.50 0.90 0.52
LSTM 0.54 0.92 0.55
GRU 0.50 0.92 0.53
TCN 0.52 0.88 0.53

Bold indicates the best performance within each method category (machine
learning or deep learning). Abbreviations: AUPRC, area under the
precision-recall curve; AUROC, area under the receiver operating
characteristic curve; CKD, chronic kidney disease; CNN, convolutional
neural network; ESRD, end-stage renal disease; GRU, gated recurrent unit;
LSTM, long short-term memory; RNN, recurrent neural network; TCN,
temporal convolutional network.

Table 3. Model performance for prediction of ESRD, using clinical data-
only (24-month observation window, n=1422).

Model performance metric

Model type Model F1score AUROC AUPRC

Machine learning Logistic regression ~ 0.54 0.76 0.47
Random forest 0.58 0.79 0.51
XGBoost 0.57 0.80 0.52

Deep learning CNN 0.56 0.84 0.53
RNN 0.61 0.85 0.53
LSTM 0.60 0.88 0.56
GRU 0.60 0.87 0.55
TCN 0.61 0.83 0.54

Bold indicates the best performance within each method category (machine
learning or deep learning). Abbreviations: AUPRC, area under the
precision-recall curve; AUROC, area under the receiver operating
characteristic curve; CKD, chronic kidney disease; CNN, convolutional
neural network; ESRD, end-stage renal disease; GRU, gated recurrent unit;
LSTM, long short-term memory; RNN, recurrent neural network; TCN,
temporal convolutional network.

Table 4. Model performance for prediction of ESRD, using merged data
(24-month observation window, n=1422).

Model performance metric

Model type Model F1score AUROC AUPRC

Machine learning Logistic regression ~ 0.55 0.75 0.45
Random forest 0.60 0.84 0.49
XGBoost 0.61 0.85 0.51

Deep learning CNN 0.56 0.80 0.46
RNN 0.62 0.87 0.53
LSTM 0.65 0.93 0.61
GRU 0.63 0.90 0.58
TCN 0.61 0.89 0.58

Bold indicates the best performance within each method category (machine
learning or deep learning). Abbreviations: AUPRC, area under the
precision-recall curve; AUROC, area under the receiver operating
characteristic curve; CKD, chronic kidney disease; CNN, convolutional
neural network; ESRD, end-stage renal disease; GRU, gated recurrent unit;
LSTM, long short-term memory; RNN, recurrent neural network; TCN,
temporal convolutional network.

superior performance among all tested architectures. To
explore these misclassifications, we analyzed type I and type
II errors, as depicted in Figure 5. Notably, most incorrect

predictions for patients who progressed to ESRD, yet were
predicted otherwise, cluster near the lower end of the plot
rather than around the 0.5 decision threshold or randomly
scattered. This clustering suggests that consistent factors may
be influencing these errors.

To understand model misclassification causes, we analyzed
type I and type II errors. For type Il errors, we compared 16
false negatives (patients incorrectly predicted not to develop
ESRD but who did) with 70 true positives (patients correctly
predicted to progress). For type I errors, we contrasted 17
false positives (patients incorrectly predicted to develop
ESRD) with 1319 true negatives (patients correctly predicted
not to progress).

Based on Tables 5 and 6, CKD S5 emerges as a critical fea-
ture in prediction errors. For false negatives (incorrectly pre-
dicted as not progressing to ESRD), the mean value for CKD
S5 at timestamp 6 is significantly lower (0.06 vs 0.36) com-
pared to correctly predicted cases, suggesting these patients
did not have an S5 record until later. Conversely, false posi-
tives show CKD S5 presence at both timestamps 6 and 7,
indicating these patients had S5 records but did not actually
progress to ESRD.

Impact of updated eGFR equation on racial bias in
predictions

When comparing predictions between the 2009 and 2021
eGFR equations (Figure 6A and B), we observed a decrease in
total incorrect predictions from 33 to 28, reducing the overall
error rate from 0.0232 to 0.0228. Among these misclassifica-
tions, only 7 cases were common to both equations. Analysis
of racial distribution in prediction errors revealed varying
patterns across different groups: incorrect predictions for
White patients increased from 2 to 4, African American
patients decreased from 4 to 1, and patients in the “Other”
category increased from 10 to 12. However, these numbers
are clearly too small for robust insights.

Discussion

This study demonstrates the value of integrating multiple
data sources and DL methodologies for improving ESRD
progression predictions in CKD patients. By combining
claims and EHR data with LSTM and GRU models, we
achieved enhanced predictive accuracy using a 24-month
observation window—an optimal balance between early
detection and prediction reliability. Our approach addresses
a critical gap in chronic disease management by offering a
more comprehensive view of patient health trajectories than
single-source approaches.

Error analysis revealed important clinical implications.
Patients incorrectly predicted not to develop ESRD (false neg-
atives) had significantly lower prevalence of CKD S5 records
at timestamp 6 compared to true positives (0.06 vs 0.36),
suggesting sudden kidney function decline—a phenomenon
clinicians recognize as “crashing” into dialysis. Conversely,
false positives showing CKD S5 in consecutive timestamps
without progression may reflect data censoring, as patients
might have progressed after our dataset endpoint.

While the updated 2021 eGFR equation showed modest
improvement in prediction accuracy compared to the 2009
equation (error rate reduction from 0.0232 to 0.0228), the
pattern of misclassifications offers greater insight. With only
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7 cases misclassified by both equations despite similar overall
error rates, these formulas clearly capture different aspects of
kidney function. This suggests that while the 2021 equation
may better serve minoritized populations by removing race-
based adjustments, eGFR alone remains insufficient for accu-
rate ESRD prediction.

These findings underscore the need for a multifaceted
approach to risk assessment, combining traditional clinical
markers, novel predictive features, and awareness of

potential rapid disease progression patterns to develop more
targeted interventions across diverse populations.

Limitations

This study’s reliance on data from a single institution may
limit the model’s generalizability to other care settings. Using
EHR data introduces observational bias, incomplete records,
and underrepresentation of certain patient groups, which can
undermine both accuracy and fairness. Although we applied
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oversampling to mitigate class imbalance, the contrast
between high AUROC and lower F1/AUPRC indicates that
imbalance remains an issue; more sophisticated approaches—
such as ensemble methods, cost-sensitive learning, or hybrid
sampling—may be needed. Finally, unaddressed time lags
between claims and clinical data can distort temporal rela-
tionships and reduce predictive precision.

Future directions

To address data censoring issues, we will first truncate data
to 2016 and analyze outcomes from 2017 to 2018, then
expand our dataset beyond 2018 to enhance trajectory mod-
eling. We will integrate unstructured clinical notes to capture

Table 5. Analysis of type Il error (24-month observation window,
n=1422): features and their impact on prediction accuracy (feature
comparison between false negatives and true positives).

Mean
Model Correct Incorrect P Timestamp
n_claims_I 0.70 0.14 .048752 N
n_claims_O 5.71 2.67 .001325 2
net_exp_O 3831.83 830.61 .002747 0
S5 0.36 0.06 .001189 6
S5 0.37 0.49 662073 7
net_exp_O 4219.01 1044.37 .001883 4

This table presents representative subsets of features under various
timestamps. Features in bold appear in both analyses.

Table 6. Analysis of type | error (24-month observation window,
n=1422): features and their impact on prediction accuracy (feature
comparison between false positives and true negatives).

Mean
Model Correct Incorrect P Timestamp
n_claims_DR 13.52 7.21 0.001156 3
n_claims_O 3.03 1.69 0.009384 4
S4 3831.83 830.61 0.002747 4
S5 0.09 0.35 0.000250 6
S5 0.08 0.35 0.001388 7
net_exp_O 1044.82 333.61 0.000324 4

This table presents representative subsets of features under various
timestamps. Features in bold appear in both analyses.
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patient information missed in structured data, providing a
more comprehensive health view and improving prediction
accuracy.

We will implement advanced algorithms to synchronize
claims and clinical data temporally, reducing time lag effects
that currently impact model performance. To understand
prediction errors, we will perform SHAP analysis on misclas-
sified cases, identifying key features contributing to these mis-
classifications and guiding targeted model improvements.

Finally, we will validate our framework’s versatility by
applying it to other chronic conditions such as heart disease,
assessing its broader potential across various care delivery
settings. This systematic expansion will provide actionable
insights for both our ESRD prediction model and chronic dis-
ease management more broadly.

Conclusion

This study demonstrates the effectiveness of integrating
diverse health-care data with advanced ML techniques to
accurately predict ESRD in CKD patients. The combined
data approach substantially enhances predictive performance
and provides deeper insights into disease progression. SHAP
analysis and feature importance assessment highlighted key
predictors at both individual and cohort levels.

A critical contribution of this work is a framework for
optimizing observation windows, balancing early detection
with prediction accuracy. We identified a 24-month observa-
tion window as optimal for maximizing predictive effective-
ness while minimizing unnecessary  interventions.
Additionally, evaluating the updated 2021 eGFR equation
supports efforts toward health equity and fairer clinical
outcomes.

Overall, this research advances CKD management through
integrated data and innovative Al methodologies, setting the
stage for personalized, equitable care, and future applications
in chronic disease prediction and management.
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