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Abstract
Objectives: To improve prediction of chronic kidney disease (CKD) progression to end-stage renal disease (ESRD) using machine learning (ML) 
and deep learning (DL) models applied to integrated clinical and claims data with varying observation windows, supported by explainable artifi
cial intelligence (AI) to enhance interpretability and reduce bias.
Materials and Methods: We utilized data from 10 326 CKD patients, combining clinical and claims information from 2009 to 2018. After prepro
cessing, cohort identification, and feature engineering, we evaluated multiple statistical, ML and DL models using 5 distinct observation 
windows. Feature importance and SHapley Additive exPlanations (SHAP) analysis were employed to understand key predictors. Models were 
tested for robustness, clinical relevance, misclassification patterns, and bias.
Results: Integrated data models outperformed single data source models, with long short-term memory achieving the highest area under the 
receiver operating characteristic curve (AUROC) (0.93) and F1 score (0.65). A 24-month observation window optimally balanced early detection 
and prediction accuracy. The 2021 estimated glomerular filtration rate (eGFR) equation improved prediction accuracy and reduced racial bias, 
particularly for African American patients.
Discussion: Improved prediction accuracy, interpretability, and bias mitigation strategies have the potential to enhance CKD management, sup
port targeted interventions, and reduce health-care disparities.
Conclusion: This study presents a robust framework for predicting ESRD outcomes, improving clinical decision-making through integrated mul
tisourced data and advanced analytics. Future research will expand data integration and extend this framework to other chronic diseases.
Key words: chronic kidney disease; end-stage renal disease; machine learning; clinical and claims data integration; predictive modeling. 

Introduction
Chronic kidney disease (CKD) is a complex, multimorbid con
dition marked by a gradual decline in kidney function, which 
can ultimately progress to end-stage renal disease (ESRD).1

With a global prevalence of CKD ranging from 8% to 16%, 
and estimates suggesting that around 5%-10% of individuals 
diagnosed with CKD eventually reach ESRD,2 they represent a 
major public health challenge, particularly due to its strong 
associations with diabetes and hypertension.3 Chronic kidney 
disease progression is classified into 5 stages, culminating in 
ESRD, where kidney function drops to 10%-15% of normal 
capacity, necessitating dialysis or transplantation for patient 
survival.1 The economic impact of CKD is significant, with a 
relatively small proportion of Medicare CKD patients in the 
United States contributing to a disproportionately high share 
of Medicare expenses, particularly when they progress to 
ESRD. Additionally, more than one-third of ESRD patients are 
readmitted within 30 days of discharge, underscoring the crit
ical need for early detection and management of CKD to pre
vent its progression to ESRD and to reduce health-care costs.4

Previous CKD progression prediction efforts used either elec
tronic health record (EHR) clinical data5 or administrative 
claims.6,7 These approaches often use limited features, not fully 
capturing CKD progression complexity. Sharma et al8 developed 

a claims-based model to identify CKD patients at hyperkalemia 
risk, while Krishnamurthy et al6 predicted CKD onset using 
comorbidities and medications. Claims data typically lack clini
cal data’s granularity. Tangri et al9 used age, gender, and esti
mated glomerular filtration rate (eGFR)10 to predict ESRD 
progression, and Sun et al11 utilized serum creatinine and urine 
protein levels for high-risk patient identification. Models using 
only clinical data may miss complete health-care system interac
tions, struggle with missing data and inconsistent recording, and 
overlook socioeconomic factors and health-care utilization pat
terns, limiting their applicability across diverse populations.

This study bridges a critical gap by developing a frame
work that utilizes integrated clinical and claims data rather 
than isolated data sources. By minimizing the observation 
window needed for accurate predictions, our approach bal
ances clinical relevance with patient-centered practicality. 
This integration enhances both predictive accuracy and clini
cal utility, enabling more informed decision-making to 
improve patient outcomes.

Objective
This research evaluates predictive models for CKD progres
sion to ESRD using integrated clinical and claims data. 
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Figure 1 illustrates our study design, where the observation 
window begins at the initial diagnosis of CKD stage 3 (t¼0). 
Although patients may progress through subsequent CKD 
stages (stages 4 and 5) during this observation period, our 
cohort specifically excludes those developing ESRD within 
this timeframe. This ensures that predictive modeling utilizes 
only pre-ESRD data for forecasting future ESRD onset.

� Our primary objective, ESRD risk prediction, aims to esti
mate the probability that a patient diagnosed with CKD 
stage 3 will develop ESRD after the observation window, 
represented as follows: 

PðESRDi ¼ 1 j t> tobs;Xclinical;iðtobsÞ;Xclaim;iðtobsÞÞ;

where Xclinical;i ðtobsÞ, Xclaim;i ðtobsÞ denote the clinical and 
claims data observed up to time tobs for patient i.

� To identify the optimal observation window Tobs that 
provides the best performance across all candidate win
dows tobs (6, 12, 18, 24, and 30 months), ensuring accu
rate predictions while minimizing the length of the 
observation window required: 

Tobs ¼ arg max
t2f6;12;18;24;30g

PerformanceðtÞ;

where PerformanceðtÞ is evaluated based on key predictive 
metrics: F1 score,12 area under the receiver operating charac
teristic curve (AUROC),13 and area under the precision-recall 
curve (AUPRC).14

Data sources
This study utilized 2 integrated datasets: administrative 
claims data and clinical data. The claims dataset includes 
patient health-care interactions, spanning from 2009 to 
2018, containing diagnosis codes, treatment records, and 
health-care costs for individuals diagnosed with CKD. The 
clinical dataset from EHRs contains laboratory results, 
patient demographics, diagnostic details, and medication 
records, which was truncated to match the 10-year span of 
the claims data for consistency of integration. See Appendix 
S1 for data details.

Methods
As illustrated in Figure 2A, our comprehensive methodology 
for predicting CKD progression to ESRD consists of 3 pri
mary stages: data preparation, modeling, and additional 
analyses. Within the modeling stage, we employ a 2-phase 
analytical framework that first systematically evaluates vari
ous predictive models across multiple observation windows 
(but the same patient cohort for consistent comparisons) to 
determine optimal performance, and subsequently retrains 
the most effective model on the cohort for each observation 
window for practical clinical application. This framework 
bridges statistical rigor and clinical relevance, facilitating 
actionable insights for nephrologists managing patients with 
CKD stage 3 and above.

Data preparation
Data preprocessing
We removed duplicate records to prevent redundancy and 
bias in the analysis. Entries lacking CKD diagnoses were 
excluded to maintain relevance to study objectives, along 
with claims containing negative values (likely data entry 
errors). The cleaned claims dataset comprised 5 317 178 
claims across 7129 unique patients, while the refined clinical 
dataset included 433 421 laboratory records for 10 326 
patients. These datasets were integrated using unique patient 
IDs to provide a comprehensive view of each patient’s medi
cal and claims history.

To address missing data, we employed multiple imputation 
via chained equations.15 Continuous numerical features were 
standardized, and skewed variables were log-transformed16

to stabilize variance and mitigate outliers. For laboratory val
ues missing unit specifications, we used distribution detection 
and adjustment17 to identify outliers and harmonize units 
across records (medical expert-advised ranges in 
Appendix S2).

Cohort identification
As depicted in Figure 2B, cohorts were curated through a 
multistep process: patients at CKD stage 3 were selected and 
an observation window—18 months in the example, but 
adjustable per study—was applied. Only individuals with 
complete clinical and claims data throughout this window 
were retained, and those who progressed to ESRD within it 
were excluded, yielding a cohort for analysis.

Figure 1. A timeline illustration of observation windows for CKD progression to ESRD. The observation starts at CKD stage 3. Objective 1 estimates the 
probability of ESRD occurrence after the observation window, using clinical and claims data within the observation window, while objective 2 identifies 
the optimal observation window that maximizes predictive performance. Abbreviations: CKD, chronic kidney disease; ESRD, end-stage renal disease.
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Feature engineering
Feature engineering involved identifying predictive variables 
essential for modeling. For claims data, we derived 2 main 
groups of features: cost-based features, including claim 
counts, aggregate patient costs, cost ranges, and cost stand
ard deviations from inpatient, outpatient, professional, phar
macy, and vision claims; and comorbidity-based features, 
such as CKD stage 3 duration, emergency department visit 
frequency, and critical comorbidities (eg, hypertension, dia
betes, phosphatemia).

Clinical data features were categorized based on nephrol
ogy expert consultations, relevant literature, and dataset 
characteristics into demographic features, including age, gen
der, ethnicity, and body mass index (BMI) as established 
CKD progression indicators; laboratory features comprising 
essential clinical parameters like eGFR, hemoglobin, phos
phorus, serum calcium, and bicarbonate (excluding urine 
albumin-to-creatinine ratio [UACR]18 and sodium due to 
insufficient data availability); and additional comorbidity fea
tures, capturing conditions such as cardiovascular disease, 
anemia, and metabolic acidosis, which are known to influ
ence CKD outcomes.

Statistical analyses compared variables between patients 
progressing to ESRD and those who did not. For continuous 
variables, data were assessed for normality; normally distrib
uted variables were analyzed using independent t-tests to com
pare group means. Nonnormally distributed variables 
underwent logarithmic transformation during preprocessing 
before applying t-test. Categorical variables were expressed as 
frequencies (percentages) and compared using chi-squared 
tests. Statistical significance was set at P< .05 for all analyses.

Modeling and validation
We trained both machine learning (ML) and deep learning 
(DL) models on stratified train/validation/test splits to pre
serve class proportions, and applied SMOTE19,20 to the train
ing data to oversample the minority class.

ML methods
We employed logistic regression (LR)21 as our baseline model 
for ESRD progression probability estimation. We extended 
our analysis to random forest (RF)22 and XGBoost,23 evalu
ating performance via k-fold cross-validation.24 Random for
est utilizes multiple decision trees to enhance accuracy while 
reducing overfitting. XGBoost sequentially builds models to 
correct previous errors, proving highly effective for struc
tured data.

DL methods
To develop a robust predictive model for CKD progression to 
ESRD, we adopted methodologies from prior studies7,25 by 
constructing longitudinal data representation with 3-month 
intervals following initial CKD stage 3 diagnosis. These inter
vals were sequentially indexed as timestamps (0 for months 
0-3, 1 for months 3-6, etc.).

This temporal segmentation approach serves several pur
poses, capturing CKD’s temporal evolution, reflecting its 
gradual progression, aligning with clinical guidelines recom
mending periodic nephrologist visits, and accommodating 
potential time lags between clinical events and their corre
sponding claims data. These lags, particularly notable for 
critical events such as transplantation or dialysis initiation, 
exhibit substantial variability both across and within patient 

records, complicating consistent correction strategies. 
Employing 3-month intervals mitigates the impact of these 
temporal discrepancies, improving model accuracy. Numeri
cal features were aggregated, categorical features encoded 
binarily to reflect conditions or events, and baseline historical 
records were analyzed to adjust for preexisting conditions, 
thereby ensuring accurate representation of CKD progres
sion. This timestamp-based structure allows models to cap
ture disease progression dynamics and identify critical 
temporal patterns signaling heightened ESRD risk.

We evaluated multiple DL architectures, including convo
lutional neural networks (CNNs)26 for feature extraction; 
recurrent neural networks (RNNs),27 long short-term mem
ory (LSTM) networks,28 and gated recurrent units (GRUs)29

for modeling temporal dependencies; and temporal convolu
tional networks (TCNs)30 for sequence modeling. These 
architectures were selected to optimize prediction accuracy of 
ESRD progression and improve identification of associated 
risk factors. Detailed implementation information is available 
in Appendix S4.

To maximize clinical relevance, our analytical framework 
employs a 2-phase approach (as illustrated in Figure 2A, 
stage 2). First, we systematically compare all modeling tech
niques mentioned above across multiple observation win
dows to identify optimal predictive performance. Second, 
recognizing that clinicians cannot predetermine a patient’s 
progression timeline to ESRD in real-world settings, we 
retrain the best-performing model using the complete cohort 
with the optimal observation window. This clinically ori
ented model then undergoes comprehensive explainable AI 
analysis to identify key predictive features and temporal pat
terns. This approach bridges the gap between statistical per
formance and practical clinical implementation, providing 
actionable insights for nephrologists.

Explainable AI methods
After identifying the best-performing model and optimal 
observation window, we employed 2 complementary explain
able AI techniques to understand the features driving these 
predictions. At the cohort level, we utilized feature impor
tance analysis to identify key predictive variables across the 
population. At the individual level, we applied SHapley Addi
tive exPlanations (SHAP) analysis to provide detailed, 
patient-specific insights into model predictions.

Additional analyses
Beyond the core dual-phase predictive framework outlined 
above, we conducted several additional analyses to enhance 
the robustness and fairness of our ESRD prediction models. 
Specifically, we investigated cases of model misclassification 
to identify underlying patterns and contributing factors, pro
viding deeper insights into prediction limitations. Further
more, we assessed the influence of recently updated eGFR 
equation on racial disparities within CKD progression predic
tions, aiming to ensure clinical fairness and improve the accu
racy of our predictive models.

Analysis of model misclassifications
We examined predictive probability distributions across our 
sample set to analyze misclassifications from our optimal 
model. We evaluated both false positives (type I errors) and 
false negatives (type II errors) in ESRD progression predic
tions to identify patterns contributing to incorrect 
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predictions. This error analysis provides insights into model 
limitations and highlights potential areas for refinement, ulti
mately improving clinical reliability and decision support.

Impact of updated eGFR equations on racial bias in CKD 
predictions
The 2021 workgroup led by the National Kidney Foundation 
and American Society of Nephrology recommended an 

updated CKD-EPI equation that removed race coefficients, 
addressing concerns about racial bias in eGFR calcula
tions,31,32 such as race-based components lacking biological 
basis and risking the perpetuation of health-care 
disparities.33,34

For our study using data from 2009 to 2018, we primarily 
used the 2009 CKD-EPI equation since this was the standard 
clinical calculation during the study period and informed 

Figure 2. Framework for CKD progression prediction. (A) Three-stage pipeline for predicting CKD progression to ESRD. Stage 1: feature engineering, data 
preprocessing, and cohort identification using clinical and claims data. Stage 2: (2A) systematic evaluation of observation windows with ML/DL models; 
(2B) retraining the optimal model on the filtered cohort from the optimal observation window, followed by explainable artificial intelligence (AI) analysis. 
Stage 3: Additional analyses including bias detection and misclassification assessment. (B) Multistep cohort curation process for longitudinal CKD 
analysis. Starting with initial selection of patients at CKD stage 3, an adjustable observation window (18 months shown) was applied. Only patients with 
complete clinical and claims data throughout this period were retained, while those progressing to ESRD within the observation window were excluded, 
ensuring a cohort for analysis (highlighted in yellow) with uninterrupted longitudinal records. Abbreviations: CKD, chronic kidney disease; DL, deep 
learning; ESRD, end-stage renal disease; ML, machine learning.
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actual physician decisions and CKD staging. We additionally 
applied the 2021 race-free equation in our further analysis 
section to compare outcomes and assess improvements in 
prediction accuracy and equity, particularly for minority 
populations. Note that adopting the updated equation may 
affect CKD stage classification, potentially altering cohort 
composition and model predictions.

Results
Cohort for analysis and data characteristics
In this subsection, we present data integration trends and 
cohort characteristics. Figure 3A shows patient distribution 
across CKD stages with varying observation windows. 
Patient numbers decline as windows extend from 6 to 30 
months due to insufficient data or ESRD progression within 
the window. The ESRD columns represent patients who pro
gressed to ESRD after their respective observation windows. 
While some patient losses may be attributed to mortality, we 
lack confirmatory data.

To ensure model consistency and fair comparability, we 
trained and tested our models using the same patient cohort. 
Recognizing the issue of cohort sizes decreasing as the obser
vation window lengthens, we selected patients who had at 
least 30 months of follow-up data after their CKD stage 3 
diagnosis. We specifically chose 30 months because it repre
sents the smallest cohort across the range of observation win
dows; thus, patients in this 30-month cohort are also 
guaranteed to be present in all shorter observation windows. 
For the training datasets, we utilized this same group of 
patients but varied the length of the data included according 
to different observation windows. This approach allowed us 
to systematically assess how different observation windows 
affected model performance and to identify the optimal win
dow based on test dataset results.

After requiring ≥30 months of post-stage 3 data, we com
pared claim-only (n¼5518) and clinical-only (n¼ 6842) 
cohorts to the merged sample. Combining data reduced the 
cohort to 1422 patients for the 24-month window (optimal) 
and 1355 for the 30-month window (Figure 3B), reflecting 
exclusion of those lacking 1 data source and yielding a more 
comprehensive dataset.

Table 1 summarizes characteristics of our 1422-patient 
cohort; 86 (6%) progressed to ESRD, while 1336 did not. 

Mean progression time from CKD stage 3 to ESRD was 4.82 
± 1.82 years. End-stage renal disease patients were younger 
(69.13 vs 72.04 years, P< .001) with significant racial dis
parities: African Americans showed higher progression rates 
(14.0% vs 4.5%), while White patients had lower rates 
(81.4% vs 93.0%, P< .001).

Hypertension was prevalent in both groups (99%), but dia
betes was more common in ESRD patients (73.3% vs 59.0%, 
P¼ .009). Secondary hyperparathyroidism and conduction 
disorders were also significantly higher in the ESRD group. 
Claims data showed slightly higher outpatient/professional 
claims counts for ESRD patients (P¼ .039) but no significant 
cost differences. Clinically, ESRD patients had lower eGFR 
(17.21 vs 22.78, P< .001), lower hemoglobin (12.15 vs 
14.25, P< .001), and more advanced CKD stages.

Performance comparison of models across datasets
To facilitate comprehension of model performance across dif
ferent data sources, we present results using a 24-month 
observation window, which yielded optimal performance 
across most models. Tables 2-4 compare the predictive per
formance of traditional ML and DL models across 3 scenar
ios: claims data-only, clinical data-only, and merged data.

The results demonstrate several key findings across the dif
ferent data sources. In the claims data-only scenario, DL 
models, particularly LSTM (AUROC: 0.92, F1: 0.54) and 
GRU (AUROC: 0.92, F1: 0.50), substantially outperformed 
traditional ML approaches such as LR (AUROC: 0.72, F1: 
0.33) and RF (AUROC: 0.74, F1: 0.36). For clinical data, 
while the performance gap narrowed, DL models maintained 
their advantage, with LSTM achieving the highest perform
ance (AUROC: 0.88, F1: 0.60). Most notably, the merged 
dataset combining both claims and clinical data yielded the 
best overall performance, with LSTM achieving better results 
across all metrics (AUROC: 0.93, F1: 0.65, AUPRC: 0.61). 
Comprehensive results across observation windows are pro
vided in Appendix S5.

Key feature analysis using explainable AI 
techniques
Leveraging the optimal 24-month window and our best 
ESRD prediction model, we performed (1) cohort-level fea
ture importance to pinpoint the most influential predictors 

Figure 3. Overview of CKD stage distribution in merged data across observation windows. (A) Variation in CKD stage distribution of merged data as a 
function of different observation window lengths. (B) Comparison of CKD stage distribution across claims, clinical, and merged data with a 30-month 
observation window. Abbreviation: CKD, chronic kidney disease.
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across the population and (2) individual-level SHAP analysis 
to generate patient-specific explanations of each prediction.

Cohort-level key feature identification
Our feature importance analysis of the optimal ML model, 
XGBoost, revealed several key predictors for ESRD progres
sion (see Figure 4A). The most critical feature was the pres
ence of CKD stage 5 (S5), aligning with clinical literature and 
expert feedback on its importance in predicting ESRD. 
Claims-related features, such as the number of outpatient 
claims (n_claims_O) and total inpatient claim expenses (net 
exp I), also ranked highly. The diverse types of top-ranked 
features underscore the benefit of multisourced data integra
tion, enhancing the model’s predictive power. This combina
tion of clinical and claims data not only improves the 
accuracy of the predictions but also supports more compre
hensive and reliable decision-making in clinical practice. 
However, while XGBoost’s feature importance reflects the 
absolute contribution of each feature, it does not specify 
whether the influence is positive or negative.

Feature impact at the individual patient level using SHAP 
analysis
To support personalized decision-making, we applied SHAP 
analysis to quantify the features driving each patient’s risk 
prediction. Figure 4B presents SHAP force plots for 2 cor
rectly predicted high-risk patients, patient X and patient Y, 
both diagnosed with CKD S5 but exhibiting distinct risk 
profiles.

For patient X, elevated risk is driven primarily by CKD S5 
and a high volume of outpatient claims (n claims DR min), 
while higher eGFR levels and the absence of certain clinical 
markers mitigate that risk. In contrast, patient Y’s lower risk 
contribution—despite the same S5 diagnosis—stems from 
younger age, fewer minimum inpatient claims (net_exp_O_
min), and lower minimum eGFR values.

Analysis of model misclassifications: type I and 
type II errors
All subsequent analyses utilize our optimal 24-month obser
vation window and the LSTM model, which demonstrated 

Table 1. Data characteristics of the patient cohort for analysis (merged data, 24-month observation window, n¼1422).

Characteristics Missing data (%)
Progressed  

to ESRD (n¼86)
Non-progressed  

to ESRD (n¼ 1336) P

Demographic
Age (years) 0 69.13 ± 12.37 72.04 ± 11.25 <.001
Female 0 40 (46.5%) 721 (54.0%) .2149
Race 0 <.001

White 70 (81.4%) 1242 (93.0%)
African American 12 (14.0%) 60 (4.5%)
Others 4 (4.6%) 34 (2.5%)

BMI 4 28.40 ± 5.32 26.40 ± 6.20 <.001
Comorbidities 0 85 (99%) 1323 (99%) .863
Hypertension
Diabetes 0 63 (73.3%) 788 (59.0%) .009
Anemia 0 55 (64.0%) 828 (62.0%) .714
Metabolic acidosis 0 22 (25.6%) 240 (18.0%) .077
Proteinuria 0 11 (12.8%) 227 (17.0%) .312
Secondary hyperparathyroidism 0 28 (32.6%) 240 (18.0%) <.001
Phosphatemia 0 4 (4.7%) 40 (3.0%) .39
Heart failure 0 6 (7.0%) 120 (9.0%) .526
Stroke 0 1 (1.2%) 40 (3.0%) .506
Conduction and dysrhythmias 0 4 (4.7%) 214 (16.0%) .005
Claims-driven features 0 120 ± 94 109 ± 86 .293
Count of pharmacy claims
Count of inpatient claims 0 3.85 ± 3.41 3.74 ± 3.62 .773
Count of outpatient claims 0 27.78 ± 24.75 22.07 ± 19.13 .039
Count of professional claims 0 105.37 ± 77.56 87.43 ± 68.02 .039
Net cost of pharmacy claims 0 12 053 ± 11 596 10 440 ± 20 662 .242
Net cost of inpatient claims 0 33 909 ± 53 540 29 440 ± 32 541 .446
Net cost of outpatient claims 0 9354 ± 17 522 8554 ± 17 492 .682
Net cost of professional claims 0 15 512 ± 18 657 11 640 ± 12 748 .061
Range of claims costs 0 11 352 ± 32 606 8852 ± 11 550 .481
Standard deviation of claims costs 0 831 ± 1263 757 ± 806 .593
Clinical-driven features 0 17.21 ± 5.46 22.78 ± 5.66 <.001
eGFR
Hemoglobin 3 12.15 ± 2.19 14.25 ± 1.8 <.001
Bicarbonate 9 22.9 ± 6.36 25.3 ± 4.22 .001
Serum calcium 6 9.39 ± 3.62 10.21 ± 2.86 .042
Phosphorus 13 3.61 ± 0.87 3.52 ± 0.72 .350
CKD stage 3 duration 0 3.7 ± 0.6 3.9 ± 1.4 .0009
Occurrence of CKD stage 4 0 47 (54.7%) 298 (22.3%) <.001
Occurrence of CKD stage 5 0 42 (48.8%) 277 (20.7%) <.001
Number of emergency department visits 16 2.63 ± 2.18 2.01 ± 1.99 .005

Continuous variables are shown as mean±SD and compared by independent t-test (log-transformed if nonnormal); categorical variables are shown as count 
(percentage) and compared by chi-squared test. “Missing data (%)” indicates the proportion of missing observations for each variable. P-values are 2-sided, 
with P< .05 denoting statistical significance. Abbreviations: CKD, chronic kidney disease; ESRD, end-stage renal disease.
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superior performance among all tested architectures. To 
explore these misclassifications, we analyzed type I and type 
II errors, as depicted in Figure 5. Notably, most incorrect 

predictions for patients who progressed to ESRD, yet were 
predicted otherwise, cluster near the lower end of the plot 
rather than around the 0.5 decision threshold or randomly 
scattered. This clustering suggests that consistent factors may 
be influencing these errors.

To understand model misclassification causes, we analyzed 
type I and type II errors. For type II errors, we compared 16 
false negatives (patients incorrectly predicted not to develop 
ESRD but who did) with 70 true positives (patients correctly 
predicted to progress). For type I errors, we contrasted 17 
false positives (patients incorrectly predicted to develop 
ESRD) with 1319 true negatives (patients correctly predicted 
not to progress).

Based on Tables 5 and 6, CKD S5 emerges as a critical fea
ture in prediction errors. For false negatives (incorrectly pre
dicted as not progressing to ESRD), the mean value for CKD 
S5 at timestamp 6 is significantly lower (0.06 vs 0.36) com
pared to correctly predicted cases, suggesting these patients 
did not have an S5 record until later. Conversely, false posi
tives show CKD S5 presence at both timestamps 6 and 7, 
indicating these patients had S5 records but did not actually 
progress to ESRD.

Impact of updated eGFR equation on racial bias in 
predictions
When comparing predictions between the 2009 and 2021 
eGFR equations (Figure 6A and B), we observed a decrease in 
total incorrect predictions from 33 to 28, reducing the overall 
error rate from 0.0232 to 0.0228. Among these misclassifica
tions, only 7 cases were common to both equations. Analysis 
of racial distribution in prediction errors revealed varying 
patterns across different groups: incorrect predictions for 
White patients increased from 2 to 4, African American 
patients decreased from 4 to 1, and patients in the “Other” 
category increased from 10 to 12. However, these numbers 
are clearly too small for robust insights.

Discussion
This study demonstrates the value of integrating multiple 
data sources and DL methodologies for improving ESRD 
progression predictions in CKD patients. By combining 
claims and EHR data with LSTM and GRU models, we 
achieved enhanced predictive accuracy using a 24-month 
observation window—an optimal balance between early 
detection and prediction reliability. Our approach addresses 
a critical gap in chronic disease management by offering a 
more comprehensive view of patient health trajectories than 
single-source approaches.

Error analysis revealed important clinical implications. 
Patients incorrectly predicted not to develop ESRD (false neg
atives) had significantly lower prevalence of CKD S5 records 
at timestamp 6 compared to true positives (0.06 vs 0.36), 
suggesting sudden kidney function decline—a phenomenon 
clinicians recognize as “crashing” into dialysis. Conversely, 
false positives showing CKD S5 in consecutive timestamps 
without progression may reflect data censoring, as patients 
might have progressed after our dataset endpoint.

While the updated 2021 eGFR equation showed modest 
improvement in prediction accuracy compared to the 2009 
equation (error rate reduction from 0.0232 to 0.0228), the 
pattern of misclassifications offers greater insight. With only 

Table 3. Model performance for prediction of ESRD, using clinical data- 
only (24-month observation window, n¼ 1422).

Model performance metric

Model type Model F1 score AUROC AUPRC

Machine learning Logistic regression 0.54 0.76 0.47
Random forest 0.58 0.79 0.51
XGBoost 0.57 0.80 0.52

Deep learning CNN 0.56 0.84 0.53
RNN 0.61 0.85 0.53
LSTM 0.60 0.88 0.56
GRU 0.60 0.87 0.55
TCN 0.61 0.83 0.54

Bold indicates the best performance within each method category (machine 
learning or deep learning). Abbreviations: AUPRC, area under the 
precision-recall curve; AUROC, area under the receiver operating 
characteristic curve; CKD, chronic kidney disease; CNN, convolutional 
neural network; ESRD, end-stage renal disease; GRU, gated recurrent unit; 
LSTM, long short-term memory; RNN, recurrent neural network; TCN, 
temporal convolutional network.

Table 4. Model performance for prediction of ESRD, using merged data 
(24-month observation window, n¼ 1422).

Model performance metric

Model type Model F1 score AUROC AUPRC

Machine learning Logistic regression 0.55 0.75 0.45
Random forest 0.60 0.84 0.49
XGBoost 0.61 0.85 0.51

Deep learning CNN 0.56 0.80 0.46
RNN 0.62 0.87 0.53
LSTM 0.65 0.93 0.61
GRU 0.63 0.90 0.58
TCN 0.61 0.89 0.58

Bold indicates the best performance within each method category (machine 
learning or deep learning). Abbreviations: AUPRC, area under the 
precision-recall curve; AUROC, area under the receiver operating 
characteristic curve; CKD, chronic kidney disease; CNN, convolutional 
neural network; ESRD, end-stage renal disease; GRU, gated recurrent unit; 
LSTM, long short-term memory; RNN, recurrent neural network; TCN, 
temporal convolutional network.

Table 2. Model performance for prediction of ESRD, using claims data- 
only (24-month observation window, n¼ 1422).

Model performance metric

Model type Model F1 score AUROC AUPRC

Machine learning Logistic regression 0.33 0.72 0.44
Random forest 0.36 0.74 0.48
XGBoost 0.39 0.75 0.47

Deep learning CNN 0.45 0.82 0.50
RNN 0.50 0.90 0.52
LSTM 0.54 0.92 0.55
GRU 0.50 0.92 0.53
TCN 0.52 0.88 0.53

Bold indicates the best performance within each method category (machine 
learning or deep learning). Abbreviations: AUPRC, area under the 
precision-recall curve; AUROC, area under the receiver operating 
characteristic curve; CKD, chronic kidney disease; CNN, convolutional 
neural network; ESRD, end-stage renal disease; GRU, gated recurrent unit; 
LSTM, long short-term memory; RNN, recurrent neural network; TCN, 
temporal convolutional network.
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7 cases misclassified by both equations despite similar overall 
error rates, these formulas clearly capture different aspects of 
kidney function. This suggests that while the 2021 equation 
may better serve minoritized populations by removing race- 
based adjustments, eGFR alone remains insufficient for accu
rate ESRD prediction.

These findings underscore the need for a multifaceted 
approach to risk assessment, combining traditional clinical 
markers, novel predictive features, and awareness of 

potential rapid disease progression patterns to develop more 
targeted interventions across diverse populations.

Limitations
This study’s reliance on data from a single institution may 
limit the model’s generalizability to other care settings. Using 
EHR data introduces observational bias, incomplete records, 
and underrepresentation of certain patient groups, which can 
undermine both accuracy and fairness. Although we applied 

Figure 4. Feature importance and SHAP analysis for ESRD risk prediction using XGBoost model (24-month observation window, n¼1422). See Appendix 
S7 for complete feature names. (A) Top 30 features importance for the XGBoost model. Features are colored from yellow-green (highest importance) to 
dark blue (lower importance). (B) SHAP analysis demonstrating the variation in feature impact on ESRD risk prediction for 2 patients with CKD stage 5. 
Red bars indicate features that increase predicted risk, while blue bars indicate features that decrease predicted risk. Abbreviations: CKD, chronic kidney 
disease; ESRD, end-stage renal disease.

Figure 5. Analysis of model misclassification: type I and type II errors. The left panel shows predicted probabilities for all patient outcomes (24-month 
conversation window, n¼ 1422), stratified by ESRD (green) and non-ESRD (blue) cases, with patient indices (1-1422) on the x-axis. The right panel 
displays only the incorrectly predicted cases (n¼ 33), using actual patient IDs on the x-axis for identification purposes. The horizontal dashed line at 0.5 
represents the classification threshold. Abbreviation: ESRD, end-stage renal disease.
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oversampling to mitigate class imbalance, the contrast 
between high AUROC and lower F1/AUPRC indicates that 
imbalance remains an issue; more sophisticated approaches— 
such as ensemble methods, cost-sensitive learning, or hybrid 
sampling—may be needed. Finally, unaddressed time lags 
between claims and clinical data can distort temporal rela
tionships and reduce predictive precision.

Future directions
To address data censoring issues, we will first truncate data 
to 2016 and analyze outcomes from 2017 to 2018, then 
expand our dataset beyond 2018 to enhance trajectory mod
eling. We will integrate unstructured clinical notes to capture 

patient information missed in structured data, providing a 
more comprehensive health view and improving prediction 
accuracy.

We will implement advanced algorithms to synchronize 
claims and clinical data temporally, reducing time lag effects 
that currently impact model performance. To understand 
prediction errors, we will perform SHAP analysis on misclas
sified cases, identifying key features contributing to these mis
classifications and guiding targeted model improvements.

Finally, we will validate our framework’s versatility by 
applying it to other chronic conditions such as heart disease, 
assessing its broader potential across various care delivery 
settings. This systematic expansion will provide actionable 
insights for both our ESRD prediction model and chronic dis
ease management more broadly.

Conclusion
This study demonstrates the effectiveness of integrating 
diverse health-care data with advanced ML techniques to 
accurately predict ESRD in CKD patients. The combined 
data approach substantially enhances predictive performance 
and provides deeper insights into disease progression. SHAP 
analysis and feature importance assessment highlighted key 
predictors at both individual and cohort levels.

A critical contribution of this work is a framework for 
optimizing observation windows, balancing early detection 
with prediction accuracy. We identified a 24-month observa
tion window as optimal for maximizing predictive effective
ness while minimizing unnecessary interventions. 
Additionally, evaluating the updated 2021 eGFR equation 
supports efforts toward health equity and fairer clinical 
outcomes.

Overall, this research advances CKD management through 
integrated data and innovative AI methodologies, setting the 
stage for personalized, equitable care, and future applications 
in chronic disease prediction and management.
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